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EDITOR'S FOREWORD

The problem of communicating in a coherent fashion the recent developments in
the most exciting and active fields of physics seems particularly pressing today.
The enormous growth in the number of physicists has tended to make the
familiar channels of communication considerably less effective. It has become
increasingly difficult for experts in a given field to keep up with the current
literature; the novice can only be confused. What is needed is both a consistent
account of a field and the presentation of a definite “point of view” concerning
it. Formal monographs cannot meet such a need in a rapidly developing field,
and, perhaps more important, the review article seems to have fallen into dis-
favor. Indeed, it would seem that the people most actively engaged in developing
a given field are the people least likely to write at length about it.

FRONTIERS IN PHYSICS has been conceived in an effort to improve the situa-
tion in several ways: first, to take advantage of the fact that the leading physicists
today frequently give a series of lectures, a graduate seminar, or a graduate course
in their special fields of interest. Such lectures serve to summarize the present
status of a rapidly developing field and may well constitute the only coherent
account available at the time. Often, notes on lectures exist (prepared by the
lecturer himself, by graduate students, or by postdoctoral fellows) and have been
distributed in mimeographed form on a limited basis. One of the principal
purposes of the FRONTIERS IN PHYSICS Series is to make such notes available to
a wider audience of physicists.

It should be emphasized that lecture notes are necessarily rough and informai,
both in style and content, and those in the series will prove no exception. This
is as it should be. The point of the series is to offer new, rapid, more informal,
and it is hoped, more effective ways for physicists to teach one another. The
point is lost if only elegant notes qualify.

The second way to improve communication in very active fields of physics is
by the publication of collections of reprints of recent articles. Such collections
are themselves useful to people working in the field. The value of the reprints

ix
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would, however, seem much enhanced if the collection would be accompanied
by an introduction of moderate length which would serve to tie the collection
together and, necessarily, constitute a brief survey of the present status of the
field. Again, it is appropriate that such an introduction be informal, in keeping
with the active character of the field.

A third possibility for the series might be called an informal monograph, to
connote the fact that it represents an intermediate step between lecture notes
and formal monographs. It would offer the author an opportunity to present
his views of a field that has developed to the point at which a summation might
prove extraordinarily fruitful, but for which a formal monograph might not be
feasible or desirable.

Fourth, there are the contemporary classics—papers or lectures which con-
stitute a particularly valuable approach to the teaching and learning of physics
today. Here one thinks of fields that lie at the heart of much of present-day
research, but whose essentials are by now well understood, such as quantum
electrodynamics or magnetic resonance. In such fields some of the best peda-
gogical material is not readily available, either because it consists of papers long
out of print or lectures that have never been published.

The above words, written in August, 1961, seem equally applicable today.
During the past decade, plasma physics has undergone a period of particularly
rapid growth: today, it is an active, mature field of physics, containing a
number of rapidly developing sub-fields, in many of which the current research
effort is comparable to that for the field as a whole a decade ago. One such
concerns the equilibrium stability properties of plasmas with large self fields;
such magnetically confined nonneutral plasmas play an important role in
collective-effect electron ring accelerators and in the generation and transport
of intense high-current relativistic electron beams. In the present volume,
Professor Davidson, himself an important contributor to the theory of nonneutral
plasma, provides a lucid account of this important new sub-field of plasma
physics, one which can be read with profit by both the experienced researcher
and the graduate student beginning his research career.

DAvVID PINES

Spring 1974



PREFACE

A nonneutral plasma is a many-body collection of charged particles in which
there is not overall charge neutrality. Such systems can be characterized, de-
pending on the charge density, by intense self electric fields. It has been known
for some time that nonneutral plasmas exhibit collective properties that are
qualitatively similar to those of neutral plasmas. For example, in klystrons and
traveling-wave tubes, the collective oscillations necessary for microwave genera-
tion and amplification are excited even under conditions in which the electron
beams in these devices are unneutralized.

The major recent interest in the equilibrium and stability properties of non-
neutral plasmas originates from several diverse and rapidly developing research
areas. These include (2) research on collective-effect accelerators (such as
electron ring accelerators) that utilize the intense self fields of an electron cluster
to trap and accelerate ions, (b) research on intense relativistic electron beams,
with applications that include high-power microwave generation, ion accelera-
tion in linear-beam geometries, and plasma heating via collective instabilities,
and (c) studies of the stripping and confinement of heavy ions in nonneutral
electron clouds in both toroidal and mirror magnetic field configurations. Al-
though these research areas have different goals and objectives, they have in
common the need to understand the equilibrium and stability properties of
magnetically confined nonneutral plasmas that are characterized by intense
self electric fields and (in high-current configurations) intense self magnetic
fields.

This book is an introduction to the equilibrium and stability theory of mag-
netically confined nonneutral plasmas. Atomic processes and discrete particle
interactions (i.e., binary collisions) are omitted from the analysis, and collective
processes are assumed to dominate on the time and length scales of interest.
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Extensive use is made of analytical techniques that are well established in the
theory of neutral plasmas.

Two levels of theoretical description are available for a collisionless non-
neutral plasma. These are (@) a microscopic or kinetic description based on the
Vlasov-Maxwell equations, which includes finite-temperature effects in a natural
manner, and (b) a macroscopic fluid description based on the moment-Maxwell
equations. The basic equations and range of validity of the kinetic and macro-
scopic descriptions are summarized in Chapter 1. Chapter 2 deals with the
macroscopic equilibrium and stability properties of cold nonneutral plasmasin
uniform magnetic field geometries. The equilibrium and stability properties of
magnetically confined nonneutral plasmas are examined within the framework
of the Vlasov-Maxwell equations in Chapter 3. Configurations ranging from
toroidal ring currents of relativistic electrons to intense relativistic electron
beams in linear-beam geometries are analyzed.

RONALD C. DAVIDSON

College Park, Maryland
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION AND HISTORICAL BACKGROUND

This book deals with the equilibrium and stability theory of magnetically
confined nonneutral plasmas. Atomic processes and discrete particle interactions
(i-e., binary collisions) are omitted from the analysis, and collective processes
are assumed to dominate on the time and length scales of interest.

A nonneutral plasma is a many-body collection of charged particles in which
there is not overall charge neutrality. Such systems can be characterized, depend-
ing on the charge density, by intense self electric fields. It has been known for
some time that nonneutral plasmas exhibit collective properties that are qualita-
tively similar to those of neutral plasmas. For example, microwave amplifying
and generating devices, such as klystrons and traveling-wave tubes,! operate
under high-vacuum conditions and depend on the existence and properties of
collective oscillations® (space-charge waves) on drifting electron beams. For
continuous operation it is reasonable to assume that the electron beams in these
devices ate electrically neutralized by the ions produced in ionizing collisions
between the beam electrons and the low-density background gas. However, for
short-pulse operation (v 1 usec, say) there is insufficient time for the ion density
to build up to a significant level, and the electron beam is unneutralized. None-
theless, in both cases the collective oscillations necessary for microwave genera-
tion and amplification are excited. Early experimental and theoretical studies
of wave propagation along neutral and nonneutral magnetically focused electron
beams®~® indeed indicated that overall charge neutrality is not a physical re-
quirement for the existence of collective oscillations and shielding effects?
in many-body charged particle systems.



In recent years there has been a considerable increase 1n interest in the equilib-
rum and stability properties of magnetically confined nonneutral plasmas This
interest 1s the result of several research programs, including the following

1. The election ring accelerator work at Berkeley,'°** Dubna,'~18
Gaiching,'® and Maryland 2°* The basic concept of a collective-effect
accelerator®® *” utilizes the intense self fields of an election cluster to trap
and accelerate 1ons  This concept dates back more than two decades,?®-3!
and experiments to foim and tiansport such clusters were performed as
eaily as 1952 by Alfvén and Wernholm 2® The recent impetus to investi-
gate ntense relativistic election 11ngs as a suitable vehicle to trap and
acceleiate 1ons was provided by the extensive theoretical and experi-
mental studies cained out by Veksler, Sarantsev, et al '*1¢

2. Expenments3*™ to generate and transport mntense high current relativistic
electron beams™ 1n gaseous or plasma medum Intense pulsed relativistic
election beams with power > 10'® W have been used (o1 suggested for use)
1n vattous ateas ot research, such as miciowave generation,*® # thermo-
nuclear fusion.*”~5! 10n acceleration 1n hinear-beam geometries,*>° and
plasma heating ¢ 57 via collective mstabilities =%

3 The AVCO HIPAC studies of the acceleration and stripping of heavy 1ons
1n nonneutial election clouds i toroidal magnetic fields 65~

4. The Maryland studies of the fundamental equiltbrium and stability proper-
ties of magnetically confined nonneutral plasmas n both mirror” " and
uniform " magnetic field geometries

5 The Punceton studies of magnetoelectiic confinement schemes for torordal
fusion plasmas.®?~* and the stupping and confinement of heavy 1ons in
nonneutral electron clouds 1n mirror magnetic fields *

Although these progiams have different goals and objectives, they have in
common the need to understand the equilibrium and stability propeities of
magnetically confined nonneutral plasmas that are charactenzed by intense self
electiic fields and (in high-curient configuiations) intense self magnetic fields.

As stated eailier, this book deals with the equilibiium and stability theory
of magnetically confined nonneutral plasmas Atomic processes® and disciete
particle interactions aie omitted from the analysis, and collec five processes are
assumed to domnate on the time and length scales of interest Two levels of
theoretical description are available for a collisionless nonneutral plasma

(@) amucroscopic or kinetic description based on the Vlasov-Maxwell equa-
tions,?”*% which includes finite-temperature effects in a natural manner, and
(b) amacroscopic flurd description based on the moment-Maxwell equations

The basic equations and range of validity of the kinetic and macroscopic de-
scriptions are summarized 1 Section 1 3 As an introductory example to orient
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the reader and 1illustrate the dramatic effect that equilibrium self electric fields
can have on particle trajectories, in Section 1 2 we examine the motion of an
electron 1n a constant-density nonneutral plasma column aligned parallel to a
uniform axial magnetic field Bo€,

Chapter 2 deals with the macroscopic equihbnum and stability properties of a
cold nonneutral plasma column ahigned parallel to a umform axial magnetic
field Bo¢, The equilibrium state (9/3¢ = 0) 1s charctenized by a zero-order
radial electric field In the general case, both the mean azimuthal velocity and
the mean axial velocity of the plasma components are allowed to be relativistic,
and the corresponding ax1al and azamuthal self magnetic fields are included in
the equilibrium analysis (Section 2 1) Various limiting equilibrium configura-
tions are studied n Sections 2 2-24 These include equilibria in which the
mean motions are nonrelativistic and the magnetic self fields are negligibly
small (Section 2 2), equilibria 1n which the mean azimuthal motion 1s relativistic
and the axial diamagnetic field is retained m the analysis (Section 2 3), and
relatvistic electron beam equilibria n which the mean axial motion 1s relativistic
and the azamuthal self magnetic field is retained in the analysis (Section 2 4)

In Section 2 5, a macroscopic equilibrium model of the Bennett pinch®-%4-%

15 discussed, including the effects of finite beam temperature Sections 2 6-2 10
deal with the macroscopic stability properiies of nonneutral plasmas 1n the non-
relatvistic regime  The analysis includes a study of stable electrostatic oscilla-
tions® analogous to those 1n a neutral ptasma column®’ (Sections 2 7 and 2 8),
electron-election™ # and electron 10n™ two-rotating-stream mstabilities that
result from the differential rotation of plasma components in the equilibrium
radial electric field (Sections 2 8 and 2 9), and the diocotron nstability¥®-!1!

1 hollow nonneutra! electron beams (Section 2 10) Relativistic beam-plasma
instabilities®® are studied in Section 2 11

Chapter 3 deals with the equilibnium and stability properties of magnetically
confined nonneutral plasmas within the framewoik of the Vlasov-Maxwell
equations The general procedure for constructing self-consistent Vlasov
equilibria for axisymmetiic systems with equilibnum electric and magnetic self
fields 1s discussed 1n Section 3 1 Several examples of specific equilibiium con-
figurations are analyzed m Sections 3 2-3 5 These include nonrelativistic
equilibria for a nonneutral plasma column™- aligned paralle! to a uniform
axial magnetic field Bo€; (Section 3 2), relatwistic E-layer equilibria’**~'1
for Astron-like configurations% 5120121 (Section 3 3), relativistic electron
beam equilibria’®7127 1n hinear-beam geometries (Section 3 4), and relativistic
electron ring equilibria® 1287132 for 3 partially neutralized electron ring that 1s
axially and radially confined 1n a mirror magnetic field (Section 3 5) An intro-
duction to the Vlasov stability properties’™ ™ of nonneutral plasmas is given
1n Sections 3 6 and 3.7.



4 Introduction

1.2 CHARGED PARTICLE MOTION IN A
NONNEUTRAL PLASMA COLUMN

As is the case with neutral plasmas, the macroscopic and Vlasov descriptions
of nonneutral plasmas involve the use of averaged quantities such as the mean
density or the distribution function. This means that in these models the details
of the motion of individual charged particles are suppressed. There is a dramatic
difference between the motion of charged particles in a neutral, field-free plasma
and their motion in a nonneutral plasma, which has an equilibrium electric field.
In order to examune this difference, the motion of a charged particle in a non-
neutral plasma column is analyzed.

The simplest example of a nonneutral plasma is an infinitety long, unneutral-
ized, constant-density cylindrical column of electrons immersed in a uniform
axial magnetic field as shown in Fig. 1.2.1. No ions are present in the system.

It is assumed that the electrons are not drifting parallel to the axis of symmetry,
and that the diamagnetic field produced by the rotation of the plasma column
about its axis of symmetry is negligible. It is also assumed that the thermal
velocities of the electrons are negligible compared with their drift velocities in
the equilibrium electric and magnetic fields, that is, the nonneutral plasma used
in this example is “cold.” The equilibrium state of this system can be investi-
gated using the equations of motion for a charged particle in a steady radial
electric field and a steady axial magnetic field.

B8 (x)=8o8;

N
r
\ 7\ R |
h L Dejsny

T
0 \ } z ng(r)

oo ] [P

Fig. 1.2.1 Constant-density column of electrons immersed in a uniform axial
magnetic field, B§*t (x) = Bge;.

For axicentered, circular, electron orbits, the radially outward centrifugal and
electric forces on a given electron are balanced by the radially inward magnetic
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y

Combined Centrifugal and
Electrostatic Forces

W=—Electron {-e)
ﬁ Magnetic Force

X

Ve

Circular Orbit

~
/ Bo€;

Fig. 1.2.2 Radial force balance for an axicentered, circular, electron orbit. The
outward centrifugal and electric forces on the electron are balanced
by the inward magnetic force [Eq. (1.2.1)].

farce, as shown in Fig. 1.2.2. The radial force balance equation for an electron
in a circular orbit is

2
m,v
- i“=—d€—w%m. (1.2.1)

In Eq. (1.2.1),v2,(r) is the azimuthal velocity of the electron, E{ (r) is the
equilibrium radial electric field, and —e and m,, are the electron charge and mass,
respectively. The radial electric field is determined from Poisson’s equation:

10 po_ 40
rarrE’ = —dnen,(r). (1.2.2)

For the constant-density profile shown in Fig. 1.2.1, Eq. (1.2.2) can be integrated

to give E0 = —r4nen,[2 for 0 <r <R p» Which can be expressed in the equivalent
form

o_ M o
E, = 2e Ope 0<r<R,, (1.2.3)

where &), = 4771 €? Im, . Introducing the angular velocity w, = vgy/r, we can
express Eq. (1.2.1) as

(1.2.4)
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where 0, =eBy/m c is the electron cyclotron frequency. The solutions to Eq.
(1.2.4) are

1/2
Q 2w?
We=wi= 12 1——9—‘;‘* ) (1.2.5)

The fact that there are two equilibrium rotation frequencies’ 77 is not surprising.
q q Y g

If the plasma column were electrically neutral, then E? = 0, and the equilibrium
rotation frequencies would be w, = 0 and w?, = £, which correspond to an
electron at rest, or an electron gyrating around the axis of symmetry at the
cyclotron frequency.

Since the plasma is assumed to be cold, the mean motion of the column is
laminar. Therefore wﬁ also represents the two possible mean rotation velocities
of the column as a whole, that is, the motion of an individual electron is the
same as that of a fluid element characterized by a mean equilibirum velocity
vgg. These two rotation frequencies w; and wy; are plotted versus 2652,/S22
in Fig. 1.2.3.

Qe
o+
W = We
L
w, 2
we=w;\
0 | [ | 1 I
0 02 04 06 08 1.0
2_2
@ e
—_—
'Q'e

Fig. 1.2.3 Plot of the two allowed values of rotation frequency, w, and
versus 2.2 /Q [Eq. (1.2.5)].
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In the low density limit, 2¢5,,/Q7 <1,

&, _¢E?
w,=x,, and w; = 20 =B, (1.2.6)
e

For low densities, the fast rotational mode w‘; corresponds to all electrons
gyrating around the axis of symmetry at the cyclotron frequency, whereas the
slow rotational mode w; corresponds to an E° X B¢, rotation of the column.

The high density limit, 26;2/Q: =1, is known as Brillouin flow!*>!** for the
case in which the beam is drifting along the magnetic field. It follows from Eq.
(1.2.5) and Fig. 1.2.3 that

Q 20?2
w,=w;==F, for Qf‘* =1. 1.2.7)

The two rotation frequencies are equal and correspond to a rigid rotation of the
column with angular velocity £2,/2. From Eq. (1.2.5) it is seen that the
condition

2w
Qf‘* <1 (1.2.8)

is required for wy to be real and thus to correspond to confined equilibrium
solutions of the single-particle or cold-fluid equations. Equation (1.2.8) states
that magnetic restoring forces (as measured by 22) must overcome electrostatic
repulsive forces (as measured by &2,) for radial confinement. If 2¢57,/Q2 > 1,
the beam expands radially, which is not an equilibrium situation.

The influence of a zero-order radial electric field £} on axicentered circular
electron orbits is apparent for this simple example. (Keep in mind that
w, = 0 or , for a constant-density neutral plasma column.) Furthermore,
it is shown in Chapters 2 and 3 that w_ and w; play an important role in the
analysis of the stability properties of constant-density, nonneutral plasma
columns.

The preceding analysis is readily extended to the case in which the electron
orbit is not axicentered or circular. If a constant electron density profile is
assumed as before, the equation of motion for an electron is

. ~
XXBoez
e—___—

m, x=—eE® —
[

, (1.2.9)

where E® = —(m, /Ze)w (xe + ye ) in the column interior, and e and ey are.

unit Cartesian vectors in a plane perpendlcular to Boe The equations of motion
forx(#) and y(r) are
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w e . . .
2px—.Qey, y= 2‘”y+Qex. (1.2.10)

x=

It is useful to transform Eq. (1.2.10) to a frame of reference rotating with
w, = W%, or w, = w; (the two possible angular velocities of rotation of the
column). Introducing

! .
X =X cos w,t +y sin w,t,

! .
Y =y cosw,—xsinw,t,

where x' and y’ are the particle coordinates in the rotating frame gives, for
Eq. (1.2.10),

. Wl
x'=—(2, - 2w,)y" + (w§ —Q,w, + ——;’ x',
(1.2.11)

. w?
Y=, 2w)x"+ (wz —Qw, + ;’e) y'

Since w, = wi solves w? — Qw, + 6;6/2 = 0, the final terms in Eq. (1.2.11)
vanish, giving

X' = —(§2, — 2w,)y’,
(1.2.12)
V' =(Q, —2w,)x".

Thus the particle motion as seen in the rotating frame consists of circular orbits

with gyration frequency equal to the vortex frequency® W,,, defined by

Wop= R — 200, - (1.2.13)

Since w, = w; or w, = Wy, it follows from Eqs. (1.2.5) and (1.2.13) that

2
e

262 1/2
eyl = we —w,=Q, (1 —-——"e) . (1.2.14)
For example, if an axicentered, circular electron orbit with radius 7 and angular
velocity w, is perturbed, its motion in the rotating frame is circular with period
T=2n/(w; —w]), as shown in Fig. 1.2.4. However, the particle motion in the
lab frame is trochoidal, as shown in Fig. 1.2.5.
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Circular Gyration with
. - + —
Period T= 2T /1wy - wg) ~

~— Axis of Rotation
(Bo €, out of the page)

Fig. 1.2.4 The perturbed motion of an electron, viewed in a frame of reference
rotating with angular velocity w, = w_ . From Egs. (1.2.12)-
(1.2.14), the perturbed motion in the rotating frame is a circular
gyration with period T'= 2n/(w; — w;). If w, = w}, the sense of
gyration is opposite to that shown in the figure.

Electron
Trajectory in
Laboratory Frame

Mean Angular
Velocity = wg

- Axis of Rotation |

(By&, out of the page)

Fig. 1.2.5 The perturbed motion of an electron viewed in the laboratory frame
(see also Fig. 1.2.4).

The preceding analysis is readily extended to include a fixed (infinitely mas-
sive), partially neutralizing, ion background with density

n =g (1.2.15)
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where f = const. = fractional neutralization. If single ionization is assumed, the
only modification in the analysis is the replacement w;e -> w;e (1—-f). For
example, Eq. (1.2.5) becomes

. Q 2“52 12
W, =W = ; 11— Q:e(l—f) ) (1.2.16)

e

For complete neutralization (f = 1), w, = @, and w_ = 0, as expected.

1.3 LEVELS OF THEORETICAL DESCRIPTION

1.3.1 General Discussion

The term nonneutral plasma is used to describe a system of charged particles
in which there is #ot overall charge neutrality. Such systems are characterized
by zero-order equilibrium electric fields, E°(x), which are ordinarly absent in
neutral plasmas. Chapters 2 and 3 include studies of the equilibrium and
stability properties of the following nonneutral plasma systems:

1. Magnetically confined, election-rich plasma column aligned parallel to a
uniform external magnetic field.

2. Relativistic electron beam propagating through a partially neutralizing ion
background, with and without a magnetic guide field.

3. Magnetically confined, partially neutralized, relativistic electron rings.

It is assumed that the nonneutral plasma systems under investigation are
collisionless, that is, the equilibrium and stability properties of these systems
are studied for time scales short compared with a binary collision time. As
stated in Section 1.1, two levels of theoretical description of a collisionless
plasma are at our disposal: a macroscopic fluid description based on moment-
Maxwell equations,” and a microscopic description based on Viasov-Maxwell
equations.2”2 Both levels of description are used in subsequent chapters
to study the properties of nonneutral plasmas.

In a macroscopic fluid description we examine the time development of
macroscopic properties of the plasma, such as

n,(x,t) = number density of the ath plasma component,
V,(x, ) = mean velocity of the ath plasma component,

P_(x,t) = pressure tensor for the ath plasma component.
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These quantities evolve self-consistently in terms of the electric and magnetic
fields, E(x, 1} and B(x, 1), determined from Maxwell’s equations. The advantage
of such a description is its simplicity. If the plasma is cold, variations in the
pressure can be ignored and thus the approximation

P, =0 13.)

can be made. This approximation results in a closed description of the time
development of n(x, 1), V (x, 1), E(x, r), and B(x, r), based on the continuity
equation, equation of motion for the fluid, and Maxwell’s equations. Both
equilibrium and stability properties can be discussed using such a model. Since
the description is macroscopic, the stability properties of course depend on
gross features of the equilibrium, such as equilibrium density and velocity
profiles, ng(x) and Vg(x). This description of a nonneutral plasma is useful
because of its simplicity. Finite geometry effects can be handled with relative
ease in a macroscopic cold-plasma description. There are, however, two main
objections to such a fluid approach. First, it is not straightforward to extend a
cold-fluid model to include finite temperature effects, that is, it is not generally
known what equations of state to use for the stress tensor P, (x, 7). Second,
certain phenomena, such as Landau damping’3® and waves and instabilities
associated with the detailed momentum-space distribution of plasma particles,
cannot be investigated using the macroscopic fluid description of a plasma,
either neutral or nonneutral.

To include the effects of finite temperature on the equilibrium and stability of
nonneutral plasmas, it is necessary to study them within a kineric (Vlasov-Maxwell)
framework. In this case, the one-particle distribution function,t fa(x, p, 1), and
average electric and magnetic fields, E(x, #) and B(x, ?), evolve self-consistently
according to the Vlasov-Maxwell equations. Self-consistent equilibria are readily
constructed in such a framework. Also there is a broad class of plasma
waves and instabilities that depend on the detailed p-space structure of the equi-
librium distribution fg(x, p). Such waves and instabilities cannot be analyzed
by means of a macroscopic cold-fluid plasma model. Although a broad class of
nonuniform equilibria can be constructed using the Vlasov-Maxwell equations,
it should be pointed out that a stability analysis based on them is generally
more complicated than one based on a macroscopic fluid description.

For future reference the basic equations used in Chapters 2 and 3 to describe
the equilibrium and stability properties of collisionless nonneutral piasma are
summarized below.

THere f x,p, 1) d 3 dap is the probable number of particles of component « with position
X and momentum p in the interval d°x d> p at time ¢,
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1.3.2 The Viasov Description

The one-particle distribution function in configuration-momentum space,
£ (x,p, 1), evolves according to the relativistic Vlasov equation,

0 9 vXB 9
F T — ] = = 1.3.2
v +v ™ +e, (E + - ) P f,x,p,0)=0, ( )
where v and p are related by
p/m,

v = . 1.33
(1 + p2/m‘2xc2)l/2 ( )

The electric and magnetic fields, E(x, ) and B(x, ¢), in Eq. (1.3.2) are determined
self-consistently from Maxwell’s equations,

1 9B
VXE= YR (1.34)
an 4n 10E
VXB=T§3¢! fd3pvfa(x, p’t)+7"ext+—c—.§’ (1.3.5)
V-E=4r% el JAp f(x,p, 1) + 4mp,,, (1.3.6)
v -B=0. (1.3.7)

Equations (1.3.6) and (1.3.5) allow the possibility of external charge and current
sources, 0., (x, #) and J_,(x, t). Equation (1.3.2) is Liouville’s theorem for the
incompressible motion of component « in the six-dimensional phase space (x, p).
Note that Eq. (1.3.2) is nonlinear since E(x, ¢) and B(x, ¢) are determined self-
consistently in terms of f_(x, p, r} from Maxwell’s equations,

An equilibrium analysis of Eq. (1.3.2) and Eqs. (1.3.4)-(1.3.7) proceeds by
setting 0/d¢ = 0 and looking for stationary solutions,fg(x, p), E®(x), and
B?(x), that satisfy T the equations

a v X B° 0
Vet (E" **T) A DRI EY)
VXE® =0, (1.3.9)

Tln writing Eqs. (1.3.10) and (1.3.11) it has been assumed that J._, and Peyy are inde-
ext ext
pendent of ¢.
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4n 4n
VXB® = ¢ %:: €y fdp Vfg(x, p)+ —c—Jext(x)’ (1.3.10)
V- E® =4n Ze, Jd&p fx, p) + 4mp (%), (13.11)
VB =0, (13.12)

An analysis of Eq. (1.3.8) reduces to a determination of the single-particle
constants of the motion in the equilibrium fields E°(x) and B°(x)."*” For the
applications of interest here, E®(x) is produced by deviations from charge
neutrality in equilibrium f[i.e., p.,(x) = 0, but e, [ d’p fo(x, p) # 0], and
B®(x) is produced by external current sources as well as any equilibrium plasma
currents, for example, a relativisic electron beam passing through a fixed ion
background. The term equilibrium as used here should not be confused with
thermal equilibrium. For a given external field configuration there can, in
general, be many Vlasov equilibria. These equilibria are stationary states that
can exist on a time scale less than a binary collision time."®” A specific
equilibrium may be unstable if perturbations about the equilibrium grow in
time or space.

A stability analysis based on Eqgs. (1.3.2)-(1.3.7) proceeds in the following
manner. The quantities f,(x, p, ), E(x, #), and B(x, #) are expressed as the sum
of their equilibrium values plus a time-dependent perturbation:

fa(x! P’ t) =fg(x’ p) + 8fa(x’ p’ [)9
E(x, f) = E°(x) + 8E(x, 1),

B(x, f) = B°(x) + 6B(x, t). (1.3.13)

The quantities f9(x, p), E®(x), and B®(x) satisfy Egs. (1.3.8)-(1.3.12). The
time development of the perturbations 67 (x, p, t), 6E(x, t), and 6 B(x, £) is
studied using Eqgs. (1.3.2)~(1.3.7). For small-amplitude perturbations, the
Vlasov-Maxwell equations are linearized about the equilibrium f3(x, p),
E°(x), and B°(x). This gives

9, . 0o, YXB°\ 3
TV 3 e (E +— o 8f,(x,p. 1)

=—e, (8E + VXCBB)- ?a'a; o(x, ), (1.3.14)

12 4p (13.15)

13
VXSE=— - 6]
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—_ 3 —-
VX3SB=—"Ze, [d°pvofy(x,p,N)+ 7 - OE, (1.3.16)
V:S8E=4n geafcﬂp 8f,(x,p, 1), (13.17)
V -8B=0, (1.3.18)

where v and p are related by Eq. (1.3.3). If the perturbations §f, (x, p, ),
SE(x, t), and 8 B(x, f) grow, the equilibrium distribution fg(x, p) is unstable.

If the perturbations damp, the system returns to equilibrium and is stable. For
spatially nonuniform equilibria with space charge, a stability analysis based on
Eqgs. (1.3.14)-(1.3.18) is generally mathematically formidable.

1.3.3 The Macroscopic Fluid Description

In this section, the essential features of a macroscopic plasma description®®
based on the moment-Maxwell equations are summarized. The ath-component
particle density, 1_(x, £), mean velocity, V,(x, £), mean momentum,

P, (x, t), and pressure tensor, P (x, t), are defined as follows:

n,(x,t)=[dp f (x,p, ), (1.3.19)
ny(x, OV, (x, 1) = [ &p vf, (X, p, 1), (1.3.20)
n,(x, P, (x, 1) = [ &p pf ,(x, p, 1), (1.3.21)

P, 0= [p—Py(6,0)] [V = Vo5, O] fo(x,p ), (13.22)

where v = (p/m,) (1 + p?/mic?)™'2. Operating on Eq. (1.3.2) with f d°p, and
Jd®p p gives

]
E‘l’lm +V- (rlava) =0, (1.3.23)
3 v-p, V,XB
EP" +V, VP, + n, =e, \E+ p . (1.3.24)

For a cold plasma, the termV * P_/n_ is not retained in Eq. (1.3.24). However,
if finite temperature effects were to be included in this macroscopic fluid model,
this term would be retained and the time development of P, (x, t) determined
by taking the appropriate momentum moments of Eq. (1.3.2). The chain of
moment equations would be closed by making an assumption about the form
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of the heat flow tensor @ (x, t). Equations (1.3.23) and (1.3.24) are supple-
mented by the Maxwell equations, that is,

10B
VXE——cat, (1.3.25)
T 4n 1 0E
VXB=— % e, Vo +—Jo + parva (1.3.26)
V. E= 02[) 4mn e, + 4npe,, , (1.3.27)
V-B=0. (1.3.28)

As in the Vlasov description, an equilibrium analysis of Egs. (1.3.23)-(1.3.28)
is carried out by setting 8/8f = 0. Dropping the V « P, term in Eq. (1.3.24)
gives

v- [n0V0] =0, (1.3.29)

Vo X B°
VO VRO = (Eo + _aT__) (1.3.30)

|

V XE® =0, (1.3.31)
VXB® = i:- % eangvg +%Jext(x), (1.3.32)
V-E?= %‘41mgea + 4mp (%), (1.3.33)
V:B° =0, (1.3.34)

where n2(x), V(x), PY(x), E®(x), and B°(x) are the macroscopic equilibrium
quantities. In Chapter 2 equilibrium solutions to Egs. (1.3.29)-(1.3.34) are
examined for a variety of equilibrium configurations.

A stability analysis based on Eqs. (1.3.23)—(1.3.28) proceeds in the following
manner. The macroscopic fluid and field quantities are expressed as the sum of
their equilibrium values plus a perturbation,

U(x, 1) =¢°(x) + 8¥(x,1). (13.35)

Linearization of Egs. (1.3.23)<(1.3.28) gives

3
PRRAS (nd 8V, +8n,V3) =0, (1.3.36)
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)

arOPa + Va - VOP, +8V, -VPg (1.3.37)

V) X8B 8V, X B°

=e, | SE+ + ’
[ c
vxsE=—125p (1.3.38)
car e
4n 19

VXSB=—"Ze, (Sna VO +nd ava) +50E (1339
V-SE=4nZon, €,, (1.3.40)
V-8B=0. (1.3.41)

These equations describe the evolution of the perturbations 8n,(x, 1), 8V (x, £),
6P, (x,1), 8E(x, £),and 8B(x, ). The pressure tensor term V * P, is omitted from
Eq. (1.3.37). 1f these perturbation quantities grow in time or space, the
equilibrium is unstable.

In concluding this section it is noted that a cold-plasma description based on
Eqs. (1.3.23)<(1.3.28) is equivalent to a Vlasov description provided the dis-
tribution function f,(x, p, t) is of the form

L, p, t)=ny(x,t)§[p—P,(x,1)]. (13.42)
Integration of Eq. (1.3.42) readily gives
J&p f(x,p, 1) =ny(x,1),
I &p pfy(x, Py 1) = no(x, P (x, 1),

P (x,t)/m,
[1+P2(x, t)/mic?]

S8 (x,p,8) = ny(x, DV, (x,1) =n,(x, 1)

12’

and

P(x,5)=0.
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CHAPTER 2

MACROSCOPIC EQUILIBRIA AND STABILITY

2.1 THE EQUILIBRIUM FORCE EQUATION

In this section the equilibrium properties of a cold, multicomponent, non-
neutral plasma column aligned parallel to a uniform external magnetic field,
B§*'(x) = Bye,, as illustrated in Fig. 2.1.1, are considered. The analysis is based

on the macroscopic fluid description discussed 1n Section 1.3.3 [see Egs.
(1.329)(1.3.34)].

B8 x)- Bk

N/ T
A ' ;'\ .
\J )

Plasma Column y

Fig. 2.1.1 Nonneutral plasma column aligned parallel to a uniform exteral
magnetic field, BS*'(x) = Boléz. Cylindrical polar coordinates
(r, 9, z) are introduced with the z-axis coinciding with the axis of
symmetry; 8 is the polar angle in the x-y plane, and r =
(x? + %)Y is the radial distance from the z-axis.

17




The following simplifying assumptions are made regarding the equilibrium
configuration:

1. The plasma is infinite and uniform in the z-direction, with dn>(x)/3z =
and aV3(x)/9z =0, and there is no equilibrium electric field parallel to
Bo€, , thatis, E®(x) * €, =0.

2. The equilibrium radial density and velocity profiles are assumed to be
azimuthally symmetric about the magnetic axis, that is,

na(x)=ni(r), Vo) =Va(),
where r = (x? +y?)"?
Fig. 2.1.1).

In general, the plasma components may have relativistic motion along the
guide field Boe , as well as in the azimuthal direction. Since there is no radial
fluid motion in equilibrium, the mean velocity of component & can be expressed
as

is the radial distance from the axis of symmetry (see

Vo(r) = V8, ()8, + V2,008, , (2.1.1)

where 30 and é\z are unit vectors in the 6- and z-directions, respectively. The

equilibrium continuity equation,V + [n3(r) V3(r)] = 0, is automatically satisfied
for arbitrary n3(r), V 3¢ (r). and V' 2_(r). For a nonneutral plasma column with
azimuthal symmetry, the equilibrium radial electric field, E®(x) = £ ,°(r)'€r, is
determined from Poisson’s equation [see Eq. (1.3.33) with p,, = 0] :

1
r

w[@

7 Y= X 4ne o). (2.1.2)

Equation (2.1.2) can be integrated to give

r

E‘,’(r):iggeafdr rmd(r'). (2.13)

0

It has been assumed that there are no external charge sources in obtaining Eq.
(2.1.3). For the equilibrium configuration shown in Fig. 2.1.1, the equilibrium
magnetic field B°(x) can be expressed as

B°(x) =Bo €, + B§(r)e, + BS(r)e,, (2.1.9)
where B is the externally imposed magnetic field, B§(r) is the azimuthal self

field generated by the equilibrium axial current, J (r) z n°(r)ea az(r) and
BS(r) is the axial self field generated by the equilibrium azimuthal current,
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Jon = Zn (r)e Vg (r). For example, if no ions are present, and the motions
of the electron fluid are in the direction shown in Fig. 2.1.2, the self magnetic

CD/Plasma

ext Column

'< [ 8

Fig.2.12 Nonneutral plasma column aligned parallel to a uniform external
magnetic field, Be"t(x) BOA The axial electron current,
—no(r)eV? (r)ez,and azimuthal electron current, —no(r)eV 0 (e,
produce the self magnetic field components, B§ (r)ee and

N .
Bi(r)e,, resp\ectlvely.

fields are in the negative z- and 8-directions. The axial self field for this con-
figuration tends to weaken the total magnetic field strength in the z-direction.
The azimuthal self field (which is strongest at the outer edge of the column)
tends to pinch or radially confine the beam. The equilibrium self magnetic

field is determined from Eq. (1.3.32) with J,,(x) = 0. The two components of
this equation are ’

ang( )——-—J n=—" 2 e n(Ve, (), (2.1.5)

[rB ") = ’°( )— — 2 e e NV, (r). (2.1.6)




Equations (2.1.5) and (2.1.6) can be integrated to give

B:(r)=5§§ € f dr' ny("WVe(r), 2.1.7)
Bé(r)=%§ea f dr' ng ("W o ¢ r'. (2.1.8)
0

Referring to Egs. (1.3.29)-(1.3.34), we note that the equilibrium Maxwell
equations and the continuity equations are satisfied. The only remaining
equation is the radial force equation (the 8- and z-components of the force
equation are trivially satisfied). The radial component of Eq. (1.3.30) is

ve p® V2.(Bo +BS) VO B
_ a: a0=ea [E:’+ af g z/ a: [/ ) (2.1_9)

Since m, V3 =P3(1 + P /mic?)™2, Eq. (2.1.9) can also be written in the
form

m.y V% Ve, (Bo+B5) VO BS
e [E3+ ""(z D _ 21 @11

where v,(r) = (1 — V¥%/c* — V3 /c*)™2. Equation (2.1.10) is a statement of
the balance between centrifugal, electrostatic, and magnetic forces on a fluid
element.

It 15 convenient to introduce dimensionless variables for the 8- and z-compon-
ents of the velocity as follows:

Bus®=Voe®M[c; B, (N=Ve@)/[c. (2.1.11)

IfE(r), BS(r), and B (r) are eliminated from Eq. (2.1.10) by means of Eqgs.
(2.1.3),(2.1.7), and (2.1.8), Eq. (2.1.10) can be expressed as

r

2 r
_ M) Bag(r)c]® ea$ _4rl Ze, f dr' r'nd(r")

[|]

(Equation continues on page 21)
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+B,(r) | Bo + 4n E €, f dr'g, g(")"g(")

r

—dn— %enfdr'r'ﬁm(r')ng(r') (2.1.12)

Bz (r) , $
°
where 7,(r) = (1 —B%y —£2,)7"/2. The term on the left in Eq. (2.1.12) is the
centrifugal force on a fluid element, and the first term on the right is the radial
electrostatic force on a fluid element. The second term on the right is the
VO X (Bg*t + BS) force on a fluid element, and the final term is the V3 X BS
force on a fluid element.

It is important to note from Eq. (2.1.12) the freedom there is in describing
the equilibrium. In particular, any two of the three quantities ng(r), 8,,(r),
and 8_,(r) can be chosen arbitrarily, and then the remaining quantity determined
from Eq. (2.1.12) [subject of course to ng(r) = 0 and B4 + B2z < 1]. Specific
examples are now considered.

2.2 NONRELATIVISTIC NONDIAMAGNETIC EQUILIBRIA

In this section the radial force equation (2.1.12) is used to study the equilib-
rium properties of nonrelativistic, nondiamagnetic, nonneutral plasma columns.
It is assumed that the axial motions of all plasma components are nonrelatvistic,
that is,

Bz <1. (2.2.1)

When Eq. (2.2.1) is satisfied, the final term in Eq. (2.1.12) (which corresponds to
the —e_ V'3, By/c pinching force on a fluid element) can be neglected in compari-
son with other terms. For example, if no ions are present, the final term in Eq.
(2.1.12) is 0(B2,) smaller than the electrostatic force term. It is further

assumed that the azimuthal motions are nonrelativistic,

2o <1, (2:22)

and that the axial diamagnetic field B is small compared to the external field
By in Eq. (2.1.12),

|By|=l4n e, f dr'B,e(r'yn)(r ) €1 Bo 1. 2.2.3)

v
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The approximation in Eq. (2.2.3) can be justified a posteriori and is consistent
with the nonrelativistic approximation in Eq. (2.2.2), provided the external
magnetic field is sufficiently strong.

Making use of Egs. (2.2.1)-(2.2.3), and 7,(r) = 1, we can write Eq. (2.1.12)
in the approximate form

m, [B e(r)c]2 47 o, ,
__&ur—zea—r—%enfdr rng(r)
0

+e, BB (7). (2.2.4)

1t is convenient to rewrite Eq. (2.2.4), the radial force equation, in terms of
the angular velocity w_(r), where

Vao(® _ B.p(n)e

w, (M= ; ; (2.2.5)
Equation (2.2.4) becomes
R 41reaen Y o
wi(r) + % 2 ./o-dr rug(r') 4+ €,Q,0,() =0, (2.2.6)
where
g, =\l 20 d e = 221
«= e an €, =sgne,. (227

Equation (2.2.6) can be used in two ways. For example, if n3(r) is specified,
Eq. (2.2.6) can be used to determine the rotation rate w,(r), that is,

€., dree, T, 0., vz
w, (H=wi)=— 1+ [1—4Z dr'rnl(r .
W) = wi0) == =3 orry Kdl @

(2.2.8)

Alternatively, if w, (r) is specified, Eq. (2.2.6) can be used to calculate the
corresponding density profile nd(r) self-consistently. Multiplying Eq. (2.2.6)
by 72 and differentiating with respect to r gives

4ne

1d
m: %‘, enng(r) == {r’ [W2(r) + €,820,w, ()] ;» . 29
If there are V plasma components, and c, (r) is specified fora=1,2,... N,

then Eq. (2.2.9) is a system of N equations that determine n%(r), n3(r), . .. ,
n$(r). Note from Eq. (2.2.8) that the condition
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dnee, .,
42 2fdr rnp() <1 (2.2.10)
r
0

must be satisfied if w_(r) is to be real. The restriction imposed by Eq. (2.2.10)
is the condition that magnetic restoring forces sufficiently exceed electrostatic
forces for radial confinement of the equilibrium,

0 Rp

2 f —

Fig.2.2.1 Plot of nd(r) versus r for the constant-density profile in Eq. (2.2.11).

Equation (2.2.8) is valid for arbitrary density profiles subject to the inequality
in Eq. (2.2.10). Asa first example, consider the case in which the density
profile is constant for each component (see Fig. 2.2.1), that is,

ng =const., 0<r<R,, .
ng ) = (2.2.11)

0, r>R,.
Equation (2.2.8) then reduces to

L 2, %} 4me e, [m, 172
@M =a==" f1x f1-2 1o ,
o

0<r<R,. (22.12)
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If there is a single component of electrons, and no ions are present in the system,
Eq. (2.2.12) reduces to the familiar result obtained in Section 1.2 [see Eq.
(1.2.5)] .7 For constant-density profiles, it follows from Eq. (2.2.12) that

w, = const. in the nonrelativistic, nondiamagnetic regime, that is, there is no
shear in angular velocity within the beam. From Eq. (2.2.12), the rotation rates
for a constant-density beam consisting of fwo components, electrons and ions

with 7; = frr,, where f = const. = fractional neutralization, are

-

Q, [ 2@, e
we=w§=7 1+ I_F(l—f) ’ (2.2.13)
Q. [~ 262 _ /2
w=wf=——{1¢| 1+—2 L f > (22.14)
oo [

for0<r <R,. InEgs. (2 2.13) and (2.2.14), &}, = 4an,e* fm, and

p, = 4nFie /m and singly charged ions are assumed The electron component
rotates rlgxdly about the axis of symmetry with angular velocity wlor w;.
Similarly, the ion component rotates rigidly about the axis of symmetry with
angular velocity w} or w;. In certain parameter regimes the difference between
the rotation velocities of the electron and ion components can provide the free
energy to drive an instability.” This two-rotating-stream instability is discussed
in Section 2.9.3.

As an example for which there is shear in the angular velocity w, (), consider
the hollow density profile illustrated in Fig. 2.2.2. This density profile is
expressed as

0, 0<r<R,,
n(r)= (A, =const, R, <r<R,,
0, r>R,. (2.2.15)

T1t is clear from Eq. (2.2.2) that the axial diamagnetic field B§(r) assumes its largest value
on axis (* = 0). If there is a single component of electrons, and no ions are present in the
system, then for a constant-density electron profile (Fig. 2.2.1)

wiRp Gpel292, |

|B’(r—0)l |41reweane
P we |

1Bl | 2B,

Since 834(Rp) < 1 by assumption [Eq. (2.2.2], and | w? e/29, 1 < |we | [see Fig. 1.2.3
and Eq. (1.2.6)], it follows that | B3¢ =0) | < |B, |, w?uch justifies the neglect of axial
diamagnetic effects in Eq. (2.2.4).
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Equation (2.2.8) then reduces to

€ Q 4me e 7 2\ |2
Wi(r) =— ocza iz 1—22__0‘_1_1’.(1_&) ‘,

2
n mo:‘Qa r

Ro<r<R,. (2..16)

Note from Eq. (2.2.16) that 3w, (r)/0r # 0 within the beam. As shown in
Section 2.10.3, this shear in angular velocity provides the energy source to
drive the diocotron instability.%8-1!1

4 ‘///

| {—e

Fig.2.2.2 Plot of nd(r) versus r for the hollow density profile in Eq. (2.2.15).

2.3 RELATIVISTIC DIAMAGNETIC EQUILIBRIA

In this section properties of the radial force equation, Eq. (2.1.12), are
examined for situations in which the mean azimuthal motion of the plasma
column is relativistic, and the axial motion is nonrelativistic, that is,

2, <1. (2.3.1)
This means that the magnetic pinching force, —e B,,B§, is neglected in Eq.

(2.1.12), but the radial force produced by the axial diamagnetic field B is
retained in the analysis, where



Bi(r) = 41r§ e, f dr' 8,,(rn3(r). (2.3.2)

r
It is also assumed that
:, <€1— ¢2::6' (23.3)

Introducing the angular velocity w, () = Voa(t)fr =B 4(r)c/r, we can express
the radial force equation (2.1.12) in the approximate form

2 41re¢en 7 LN YR
YoM W) +%§ 2 f dr'rng(r')
0

[+ 4

+w, () [ﬂuea +3z Heafn f ar' o ('Y ')] =0, (234
n

2
myc® v,

where

1

[1-Pai0)P]"

1,0 = (2.3.9)

In Eq. (2.3.4), €, =sgn e,, and Q, = | e, | Bo/mc is the ath-component
cyclotron frequency in the external magnetic field By. In the nonrelativistic
nondiamagnetic limit where 7> w2/c? €1, v, = 1 and the final term on the left
of Eq. (2.3.4) can be neglected. In this case Eq. (2.3.4) reduces to Eq. (2.2.6),
as expected.

As in the nonrelativistic nondiamagnetic regime, two points of view can be
taken in analyzing the equilibrium force relation, Eq. (2.3.4). First, if the density
profiles n%(r) are known, the mean rotational velocity wq(r) can be calculated
for each plasma component. Alternatively, if wg(r) is specified for each plasma
component, the corresponding density profiles nd(r) can be calculated self-
consistently from Eq. (2.3.4). Because of the complicated structure of Eq.
(2.3.4), introduced by the factor 7,,, the latter approach is simpler.

For present purposes it is instructive to study the equilibrium force equation
(2.3.4) for a one-component pure electron gas column with no ions present in
the system, that is,

n%(r) = 0. (2.3.6)

The equilibrium force equation for the electrons can be expressed as
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r,
0=1,(NWi(r) + _rlT f dr' r'e? (")
0

— e(r) [Qe —:12 fdr' we(r')r'w;e(r')] , (2.3.7)

r

where w;e(r) = 4mn?(r)e* /m,. Equation (2.3.7) has been analyzed by
Bogema,'* and the general solution for w7, (r) determined for arbitrary

velocity profile w,(r). The cold-fluid equilibrium described by Eq. (2.3.7)
cannot support solutions for which the total axial magnetic field reverses direc-
tion [By + B3(r) <O0]. If there is field reversal in the column interior, the radius
ro at which the total axial magnetic field passes through zero satisfies

By + B3(ro) = 0. This implies that the term in square brackets in Eq. (2.3.7) is
identically zero at » = ry, that is,

1 7 . ]
o-< /' dr' wo(r' e r'). (2.3.8)

[+

Since the remaining terms in Eq. (2.3.7) are nonnegative at 7 = ry, we conclude
that Eqs. (2.3.7) and (2.3.8) are consistent only if w,(ro) =0, and w3,(r) =0,
forr<rq. For a hollow density profile with w},(r <7o) =0, and an
appropriately chosen velocity profile w,(r) consistent with Eq. (2.3.7), dia-
magnetic effects can (in principle) reduce the total axial magnetic field to
zeroatr=rg.

As a first application of Eq. (2.3.7), consider the case in which

V() we(r) = wo = const. (2.3.9)

Equation (2.3.9) corresponds to an equilibrium with P2, (r)/r = const. for each
fluid element. The outer radius of the plasma column is taken to be R ;, that is,

n2(r)=0, r>R,. (2.3.10)
Solving Eq. (2.3.9) for w,(r) gives

Wo

——— 0<r<R,. 2.3.11
(1 +r2w%/c2)l/2 14 ( )

w,(r) =
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Evidently, the angular velocity of mean rotation decreases monotonically from
w, = Wy, forr? wifc? €1,t0 w, = wo(1 +R%w}/c?) V2, forr=R,,. Since
w,(r) is specified [Eq.(2.3.11)], Eq.(2.3.7) is an integral equation for w?,(r).
The solution to Eq. (2.3.7), consistent with Egs. (2.3.10) and (2.3.11), is'®

) r’uw? rrwy
wpe(O) 1+ Py exp ) 0<r<Rp,

0, r>R,.  (23.12)

w;e(r) =

In Eq. (2.3.12), w%:(0) = 4mn2(r = 0)e? /m, is related to Q,, wo and R, by
g P e p

w:e(o) exp (— R;wﬁ [2¢%)

[1+®wlfeD)] " (2313)

= (o2, — W)

Note from Eqgs. (2.3.12) and (2.3.13) that 0 <w, < £2, is required for
Whe(r) =0.

In the case where the azimuthal motion is nonrelativistic, R} )} /c? €1,
Eq. (2.3.12) corresponds to a rectangular density profile with w?¢(r) = wj.(0)
for 0 <r <R, (Fig. 2.3.1). Furthermore, for R} w}/c* <1, Eqgs. (2.3.11) and
(2.3.13) give w, =~ wg = w3, where w] are the rotor frequencies defined in
Eq. (2.2.13) (for f = 0).

wf,e(o)

1

2
Weelr)

r —»

Fig.2.3.1 Plot of w} (r) versus r for R wj /c* €1 [Eq. (2.3.12)].

In the case where the azimuthal motion near the outer perimeter of the plasma
column s relativistic, Eq. (2.3.12) gives a density profile peaked atr = R_,.
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For example, if R w3/c* = 2,T then w},(R,) =2 207, (0) X 2.718, and the
density profile in Eq. (2.3.12) has the form illustrated in Fig. 2.3.2. Evidently
the ratio wye(R,)/w3(0) can be made arbitrarily large by appropriate choice of
Rpwo/c. Physically, two effects cause the density to peak off axis in the
relativistic case. First, the increase in centrifugal force causes more electrons to
be in equilibrium at larger radii. Second, diamagnetic effects weaken the
magnetic restoring forces in the column interior. To illustrate the magnitude

of the diamagnetic effect for the equilibrium described by Eqs. (2.3.11)-
(2.3.13), the quantity By + B3(r)]/Bo, is calculated, that is,

) Rpwc/c
By +B§(’)= - @pe(0) dx ——-—sz(l +x% [ 2) exp (x*/2),
By wOQ’e (1 +x )
rwe fc

(2.3.14)

where wpe(0), wo , £, and R, are related by Eq. (2.3.13). InFig. 2.3.3,

[Bo +B3 (r)] /B, is plotted versus r for R} w} /c? = 2 (the ratio used in Fig.
2.3.2), and wo /82 = 0.05. For this choice of parameters, w7, (0)/wo L2 = 0.404
follows from Eq. (2.3.13), and the diamagnetic field B§ produces a 75%
depression in the axial magnetic field at » = 0.

2
5.44 g (0)

1

2
Woelr)

Fig. 2.3.2 Plot of w7, () versus r for R2 wj/c? = 2[Eq. (2.3.12)].

tNote from Eq. (2.3.11) that R;, L:.):(Rp)/c2 < 1 for any choice ofR",w:/cz.
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B3{r)+Bg
By 050
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Fig.2.3.3 Plot of total axial magnetic field, By + B$(r), versus r for
R} w}fc* = 2 (the ratio used in Fig. 2.3.2) and w,/Q, = 0.05
[Eq.(23.14)].

As a second application of the radial force equation (2.3.7), consider the case
of a rigid-rotor equilibrium where the rotational angular velocity w,(r) is
constant,

w,(r) = wo = const. (2.3.15)
As before, the outer radius of the plasma column is taken to be R, with n2(r)

=0forr >R, Since w,(r) is specified by Eq. (2.3.15), Eq. (2.3.7) is an integral
equation for w3, (r). The solution to Eq. (2.3.7) for w,{r) = wo = const. is'*

w3, (0) l: 202 B 2w 1+r2wi/2c?
(1 —r2wifc?)? W (0)  &2,(0) (1 —rwjfc?)? )’
w;e(r) = 0<r<R,,
0, r>R,, (2.3.16)
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where w,(0) = 4mnd(r = 0)e? /m,,, and wpe(0), 2,, Wy, and R, are related by

w?_(0) i R%w?[c? w?
P; = (@o2 —wf) {1-—F - 2 |@wolle — 2 02 2 172 .
wefl, —wj (1 —Rwg/fc*)

(23.17)

It is straightforward to verify from Egs. (2.3.16) and (2.3.17) that
0 <wo(l —RZw§/2¢*) < Q(1 — Rjw}[c?)*'? is required for w;e(r) = 0 over
the range 0 <r <Rp. In the case where the azimuthal motion is nonrelativistic,
R2wjfc? <1,Eq. (2.3.16) corresponds to a rectangular density profile with
Wpe(r) 22 w}(0) for 0 <r <R, (Fig. 2.3.1). Furthermore, for Rjw}/c* <1,
Eq. (2.3.17) gives wy =~ w3, where wj are the rotor frequencies defined in
Eq.(2.2.13) (for f = 0).

In the case where the azimuthal motion near the outer perimeter of the
column is relativistic, the detailed form of the density profile given in Eq.
(2.3.16) depends on the value of the parameter 8, where

w2 (0) + 202
8 El;u?_—g' (2.3.18)
1]

For 8 > 1, it can be shown from Eq. (2.3.16) that w(r) increases away from

the axis (r = 0), reaches a maximum at some r = Ry <R,,, and decreases to its

value w,’,e(Rp) at the boundary. For 2/3 <8 <1, however, cof,e(r) decreases

monotonically as a function of r. As an example, the density profile given by

Eq.(2.3.16) is plotted in Fig. 2.3.4 for 8 = 4/3 and Rpw}/c* = 0.64. From

Eq. (2.3.17), the corresponding value of rigid-rotor frequency is wg /. = 0.386.
An interesting subclass of density profiles described by Eq. (2.3.16) is the

one in which wj,(r) approaches zero (continuously) as 7 - R,,. Enforcing the

condition w}.(R,) = 0 in Eq. (2.3.16) gives

wpe(0)  1+Rjwy/2¢
205 (1—R}wp/c?)?

-1, (2.3.19)

which relates . (0), @o, and R,. Combmmg Eqgs. (2.3.17) and (2.3.19) gives

@o (1 —R,’,wﬁ/c’)”2

2 1-Riw}/2¢

(2.3.20)

which relates wo, Rp,, and £2,. The density profile consistent with Eqs. (2.3.16)
and (2.3.19) is138.13
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Fig. 2.3.4 Plot of wi.(r) versus rwg/c for R2w?fc? = 0.64,8 = 4/3, and
wo/S2, = 0386 [Eq.(2.3.16)] .

20} L+Rjwp/2¢® 1477 wf/2c?
(l _rzwg/CZ)z (l _ngg/cd)l/z (l _r2w(2)/c2)l/2 4
2 —_
Wpelr) = 0<r<R,,
0, r>R,. (2.3.21)

In Fig. 2.3.5 the density profile given by Eq. (2.3.21) is plotted versus rw, /e,
for R,wofc = 0.7 and Rpwo/c = 0.9. To illustrate the diamagnetic effect for
the equilibrium described by Egs. (2.3.19)-(2.3.21), [B, + B5(r)] /B, is plotted
versus rwg/c in Fig. 2.3.6 for the parameters chosen in Fig. 2.3.5.

2.4 RELATIVISTIC ELECTRON BEAM EQUILIBRIA

In this section the radial force equation (2.1.12) is used to study the equilib-
rium properties of a relativistic electron beam propagating parallel to a uniform,
externally applied guide field Bo€,. The positive ions are taken to form a
stationary, infinitely massive background which is at rest in the laboratory frame.
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Fig.2.3.5 Plots of w},(r) versus rwg/c for R,co/c = 0.7 and R, wo/c = 0.9
[Eq.(2.3.21)].
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Fig. 2.3.6 Plots of total axial magnetic field, By + BS(r), versus rwo /c for the
equilibrium parameters chosen in Fig. 2.3.5.
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The ions provide partial neturalization of the electron beam, and it is assumed
that the ion and electron density profiles are related by 5%

() =fg @), (24.1)

where f = const. = fractional neutralization (single ionization is assumed). It
is further assumed that the axial velocity profile of the electron beam is inde-
pendent of radial distance r, that is,

V3.(r) = B,,(r)c = foc = const. (2.4.2)

Making use of Eqs. (2.1.12), (2.4.1) and (2.4.2), we can express the radial
force equation for the electrons as

O='7e(r)w§(r)+712—(1 —f—82) [ dr' F'e? 2.¢)
0

~a0) [2.- % [or worane]., (243)

r

where W, (r) = V3 (N/r = B, o (r)c/r, whe(r) = 4nn2(r)e? /mg, 2, = By [mec,
and

1
1 =82 —rPw2@)/c*]V?

Y () = (24.4)

The term proportional to —f2 in Eq. (2.4.3) is a result of the inward magnetic
force, efo By (r), produced by the azimuthal self magnetic field B§(r) [see Eqs.
(2.1.8) and (2.1.12)] , where

r

m, Bo
B(r)=— _é_ — | dr r'w2 L) - (24.5)
0

The term propottional to —fin Eq. (2.4.3) is a result of the inward electrostatic
force on the electrons produced by the ion background. The remaining terms in
Eq. (2.4.3) are the same as those in Eq. (2.3.7) and were discussed in Section
2.3.7 As before, there is considerable flexibility in the analysis of the radial

¥Note that in the limit where there are no ions (f=190), and the axial motion is nonrelativis-

tic with 82 < 1 — 82¢(r), Eq. (2.4.3) reduces to Eq. (2.3.7), as expected.
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force equation. For example, if f, 87, and w?,(r) are specified, Eq. (2.4.3) can
be used to determine the angular velocity profile w,(r) self-consistently.

As a first application of Eq. (2.4.3) it is informative to ascertain whether the
radial force equation supports equilibrium solutions for which there is no
rotation of the electron beam, that is,

w,(r=0. (24.6)
In this case Eq. (2.4.3) is satisfied for arbitrary density profile w;e(r) provided
1—f=g2. (24.7)

Equation (2.4.7) is a statement that the outward electrostatic force (which is
proportional to 1 — f) must exactly balance the inward magnetic pinching force
(which is proportional to 82)in order for a nonrotating, cold-fluid equilibrium
to exist. Equation (2.4.7) places a severe restriction on values of f and 5. In
Section 2.5 a simple macroscopic model of a nonrotating Bennett pinch** is
constructed for the case ﬁf, > 1 —f. In this model, the difference between the
magnetic pinching force and the electrostatic repulsive force is compensated
by a radial pressure gradient.

As a second application of the radial force equation (2.4.3), the restriction
w,(r) = 0 is removed but the mean azimuthal motion of the electron beam is
assumed to be nonrelativistic with

rwl(r)
Q= =B2,(N<1—6; . (2.4.8)

In this case the axial diamagnetic field contribution [the final term in Eq.
(2.4.3)] can be neglected, and 7,(r) can be approximated by

1 =
(L —p"

Making use of Egs. (2.4.8) and (2.4.9), we can express Eq. (2.4.3) in the
approximate form

1.(N= Yo. (2.4.9)

0=1yow?2(r) +—;15(1 —f—Bg)fdr' r'w;e(r') —w,(NQ,. (24.10)
0

Solving Eq. (2.4.10) for the angular velocity profile w,(r) gives




ol —F—F2) va
cehsl1-—=—2 [ r'w? (") t ,

we(r)':w:(r):z—,yo' Qzerz

0
(2.4.11)

where Q, =eBo/m_c. Note that Eq. (2.4.11) reduces to Eq. (2.2.8) fora=e,
B2 €1—f,andy, ~1.

In the case where there is no external guide field (€2, = 0), the condition for
the radical in Eq. (2.4.11) to be real is

B2>1-7, (2.4.12)

and the angular velocity of mean rotation is [see Eq. (2.4.10)]

y 12

2 _
w(r)= wg(r)=—'1' fo LS f ar'rel ()| . (24.13)

Yo
0

Equation (2.4.12) is a statement that the magnetic pinching force must be at
least as large as the electrostatic 1epulsive force in order for the equilibrium to
exist. If B2 =1 —f, then w,(r) = 0. If B3 > 1 —f, in the present cold-plasma
model the beam rotates with mean angular velocity given by Eq. (2.4.13).

In the case wheie theie is an external guide field (2, # 0), the condition for
radial confinement of the beam is not as stringent as Eq. (2.4.12) since the
external magnetic field B, provides an additional restoring force in the radial
direction. For example, for a constant-density profile (see Fig. 2.4.1)

47 e* —,
= Fpes 0<r<R,,
w’pe(r) =
0, r>R_, (2.4.14)

14

Eq.(2.4.11) reduces to

Q 77 62 172
<70
we(r)=w:(r)=—2iili [1——&&(1 —f—ﬁg)] , 0<r<R,.
e
(2.4.15)

The condition for the radical in Eq. (2.4.15) to be real is

B3 + Q2 2vowk. 21— f. (2.4.16)
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Fig. 2.4.1 Plot of w;e(r) versus r for the constant-density profile in Eq.
(24.14).

In the absence of a guide field, Eq. (2.4.16) reduces to Eq. (2.4.12), and a
partially neutializing ion background must be present (f# 0) in order for the
electron beam to propagate %% (Keep in mind that 2 < 1 is required.) 1f an
external guide field is present, however, Eq. (2.4.16) implies that the equilibrium
exists even if theie is no ion background (f = 0), as long as the inequality

By =1—Q2 /27025;2 is satisfied. Fol the constant-density and constant-
angular-velocity profiles given by Eqgs. (2.4.14) and (2.4.15), the self-consistent
azimuthal magnetic field B§(r) generated by the axial electron current is [see
Eq.(24.5) and Fig. 2.4.2]

meﬁoa:e
—TI‘, 0<r<RP,
B =
meboipe Ky ok 24.17
—'T—;—, r> p* (... . )

The magnitude of the azimuthal self magnetic field increases linearly from zero
(at r = 0) to a maximum value of m,fo R /2e at the outer edge of the beam
(r=R,). Outside of the beam (r > R ), the magnitude of the azimuthal self
magnetic field exhibits a /r dependence.

As a further example that utilizes Eq. (2.4.11), consider the case in which
the electron density profile is hollow (see Fig. 2.2.2) with

27
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Fig. 2.4.2 Plot of azimuthal self magnetic field B§(r) versus r for a constant-
density electron beam [Eq. (2.4.17)].

0, 0<r<Ry,
4nm e?  _
w;e(r)= : =w:e’ Ry <"<Rp,
0, l’>Rp. (24.18)

Substituting Eq. (2.4.18) into Eq. (2.4.11) gives

ﬂe 27 —o R2 172
SR A 7= T 1

Ro<r<R,. (24.19)

As in the case where the axial motion is nonrelativistic (see Section 2.2), the
hollow beam profile {Eq. (2.4.18)] has a corresponding shear in angular
velocity, that is, 9w, (r)/or # 0 in Eq. (2.4.19).

For the density and angular velocity profiles given by Eqs. (2.4.18) and
(2.4.19), the self-consistent azimuthal magnetic field B(r) generated by the
axial electron current is [see Eq. (2.4.5)]

0, 0<r<Ry,
meﬁoa;e r "'Rg
By() ={~—— —, Ry <r<Rp,
meBo@?, (R —R3)
-— , I>R,. (2.4.20)
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As a final application of the radial force equation (2.4.3), the restriction that
the mean azimuthal motion of the electron beam be nonrelativisitc [Eq. (2.4.8)]
is removed. In this case there is no simplification in the form of the radial force
equation (2.4.3), or in the defimtion of v,(r) given in Eq. (2.4.4). However,
since Eq. (2.4.3) is similar in structure’ to the equilibrium equation 2.3.7),
many of the techniques used in solving Eq. (2.3.7) can be applied to Eq. (2.4.3).
For example, if the angular velocity profile w,(r) 1s specified, the density
profile wj(r) can be determined self-consistently from Eq. (2.4.3), using the
general procedure discussed by Bogema.'*® As a specific example, consider the
case of a rigid-rotor equilibrium where the angular velocity w,(r) is constant,
that is,

w, (r) = w,e = const. (24.21)

The outer radius of the electron beam is taken to be R, with w}.(r) = 0 for
r>R,. Since w,(r) is specified by Eq. (2.4.21), Eq. (2.4.3) is an integral
equation for w2e(r). The solution to Eq. (2.4.3) for w,(r) = w, = const. is

20 = “e® A-B—f7+
T a-g—rae N

2w} (165 —1)
wp (0)(1 — B3)"*

r2 2 1 ) _r2w2 c2 —
|- TSRS
22 22 1-fy—rwpfe , (24.22)

@2.(0) (1 - — P b /)"

for 0 <r <R,,and wpe(r) =0 forr >Rp. InEq. (2.4.22), wi.(0)
= 4m(r = 0)e? fm,, and wp.(0), 2, wo,Rp, By, and f can be related by
evaluating Eq. (2.4.3) at r = R,. This gives

2
Wy

Rp
l Pt *
0= +—(1—f—63)f ar'rw? (r') —we,,
— B2 —R2,5% /022 R2 pe e

(1 — By —Rpwg/c?) R, A

(2.4.23)
where w3,(r) is specified by Eq. (2.4.22). For a fully nonneutral (f = 0),

nondrifting (82 = 0) electron beam, Eq. (2.4.22) reduces to the expression for
the electron density profile given in Eq. (2.3.16), as expected.

Tln particular, Eq. (2.3.7) is identical to Eq. (2.4.3) if 1 is replaced by 1 —f — 6 in the

r
coefficient of 72 { ar'r “";e(’ ).




2.5 MACROSCOPIC MODEL OF THE BENNETT PINCH

In this section the radial force equation (2.1.12) is used to construct a simple
macroscopic model of the Bennett pinch.** The ions are taken to form a
stationary, partially neutralizing background with density

nd(r) = (), (2.5.1)

where f'= const. = fractional neutralization. It is assumed that the electrons
have no mean motion in the azimuthal direction, that is,

Boo@)=Ves(r)/c=0 25.2)
As in Section 2.4, the axial electron velocity is assumed to be independent of r,
B (r) = Bo = const. (2.5.3)

Making use of Egs. (2.5.1)-(2.5.3), and generalizing the equilibrium force
equation (2.1.12) to include a force term due to radial variation in electron
pressure P2 (r) (assumed to be a scalar), we find

4me®

L2 0y =42 —p-gp) [t i) @59
0

ng(r) 3r

For an isothermal equation of state, P2 (r) = n2(r)kz T, (T, = const.), Eq.
(2.5.4) can be expressed as

ksTe 1 3 1—f—8
—Be L o2y —21 F0 U S
me W) or Wp(r) " [dr rw, (), (25.5)

where wpe(r) = 4nnl(r)e* /m,. From Eq. (2.5.5) it is seen that for monotonic-
ally decreasing density profiles with awﬁe(r)/ar < 0, the condition

B2>1—f (2.5.6)

is required for radial confinement. The inequality in Eq. (2.5.6) assures that
the magnetic pinching forces are larger than the electrostatic repulsive forces.
The solution to Eq. (2.5.5) is




w75 (0)

wpe(r) = mz— , 2.5.7)
where w2 (0) = 4 (r = 0)e* /m,, and
8A2
g eyt @59

In Eq. (2.5.8) A, = [kgT,/4nnd(r = 0)e*] /2 is the electron Debye length at
r= 0. Note that, ifﬁg 1s close to 1 — f, the electron beam is many Debye
lengths in diameter, that is, 2a > Ap,. It is straightforward to show from Eq.
(2.5.7) that the density on axis, n2 (r = 0), is related to « and the number of

electrons per unit length of the beam, N, = 2n f ar' rnd(r'), by
()

N

4

@ =0)= (2.5.9)

ma?

The bell-shaped density profile given by Eq. (2.5.7) is illustrated in Fig. 2.5.1.

ng(0)

1

nat(r)

1
o) | 2
r/a —

Fig.2.5.1 Plot of n%(r) versusr/a for the bell-shaped density profile in Eq.
2.5.7).

2.6 ELECTROSTATIC STABILITY OF NONNEUTRAL PLASMAS

In this section the stability of nonrelativistic, nondiamagnetic, nonneutral
plasma equilibria (see Section 2.2) to small-amplitude electrostatic perturbations
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is considered. As in Section 2.1, the plasma column is aligned parallel to a
uniform external magnetic field, B§¥!(x) = Bo€, , and it is assumed that the
equilibrium is infinite and uniform in the z-direction with 9n3(x)/0z = 0, and
E°(x) * €, = 0 (see Fig. 2.1.1). The azimuthal and axial motions of the plasma
components are assumed to be nonrelativistic with

2e =r'wh [’ <1, (2.6.1)
and
2 =Y <], (26.2)

across the radial extent of the nonneutral plasma column. Consistent with
Egs. (2.6.1) and (2.6.2), the equilibrium self magnetic fields, B5(r) and Bj (r),
are omitted from the analysis, and the radial force equation (2.1.12) is approxi-
mated by [see Eq. (2.2.6)]

4me_e_
W)+ T —— [ dr' r'nd(r') + €, Qw0 () = 0. (26.3)
T omyr o

In Eq. (2.6.3), w,(r) = V34(r)/r is the angular velocity of mean rotation for
component a, r is the radial distance from the axis of rotation, e, = sgne,,
n(r) is the radiat density profile, and £, = | e, | Bo/mqc. In the stability
analysis that follows, the axial velocity of each plasma component is taken to
be independent of radius 7, that is, V3, () = V3, = const. (independent of r).

To examine the stability of various equilibrium configurations, each quantity
of physical interest is expressed as its equilibrium value plus a perturbation,
that is,

n(x, t) = nd(r) + 6n,(x, 1), (2.6.4a)
Vo (%, ) = V2, ("8 + V3,8, +8V,(x,1), (2.6.4b)
E(x, ) = E2(r)€, + SE(x, ), (2.6.4¢)
" B(x, 1) = Bo€, + 8B(x, ), (2.6.4d)

where €,, €, and €, are unit vectors in the 7-, 6-, and z- directions, re-
spectively (see Fig. 2.1.1). For small-amplitude perturbations, the evolution of
8ny(x,1),8V(x,1),8E(x, 1), and 8 B(x, £) is determined from Egs. (1.3.36)-
(1.3.41). In the electrostatic approximation the perturbed magnetic field
8B(x, t)isassumed to remain negligibly small in Egs. (1.3.37) and (1.3.38),
and Eq. (1.3.38) is approximated by

VX SE(x,£)=0. (2.6.5)
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Equation (2.6.5) implies that the perturbed electric field E(x, t) can be
expressed as the gradient of a scalar potential,

SE(x, ) = —Va¢(x, ). (2.6.6)
Since the motions of the plasma components are assumed to be nonrelativistic,
the perturbed momentum of component a can be approximated in Eq. (1.3.37)
by
6P (x,t) =m, 8V (x, 1). (2.6.7)
I

When Egs. (1.3.36), (1.3.37), (1.3.40), (2.6.4), (2.6.6), and (2.6.7) are combined,
the macroscopic fluid-Poisson equations for the perturbed quantities become

0= sny(x, )+ V- {n20) 8V (x, 1) + Bny(x, 1) (V20 ()8, + V2.8, 1},

ot
(2.6.8)
a I A n
E8Va(x, D+ [V3(r)e, + V3,e,] » V8V, (x,1)
+8V, (%, 1) - V[V 3()E,]
e } 8V, (x,1) X Bye
=2 [*—Vfid)(x, N+ (. 0% ’] , (2.6.9)
m, ¢ _
VZ8d(x,1)=—4n Z e, dny(x, 1. (2.6.10)

It is convenient to analyze Eqs. (2.6.8)-(2.6.10) in cylindrical polar coor-
dinates (r, 8, 2) with

{

A O A 0 A O
V=e¢e a+ea a0+ez 32

~|=

(2.6.11)

¥

~

and
8V (x,0) =8V, (x, 1)e, + 8V 4 (x,1)€, + 8V, (x,1)e,. (2.6.12)

To determine the wave and stability properties characteristic of perturbations
about equilibrium, a normal-mode approach is adopted. It is assumed that the
time variation of perturbed quantities is of the form™

TIt is assumed that Im w > O in carrying out the normal-mode analysis of Eqs. (2.6.8)-
(2.6.10). The dispersion equation that is obtained can then be defined in the region

Im w < 0 by appropriate analytic continuation. It should be noted that this procedure
yields the same result as is obtained when Egs. (2.6.8)-(2.6.10) are Laplace-transformed
with respect to £, and initial-value terms are neglected in the analysis.

75




exp (—iwt). (2.6.13)

The complex oscillation frequency w is determined consistently from Egs.
(2.6.8)-(2.6.10). If Im w > 0, the perturbations grow and the equilibrium
configuration is unstable. In analyzing Eqs. (2.6.8)-(2.6.10), the perturbations
are assumed to be spatially periodic in the z-direction with periodicity length
L. Making use of Eq. (2.6.13), we can Fourier-decompose the 8- and z-
dependences of all perturbed quantities according to

8V, 6,2, 1) = Q=°>5_“ . I 89 k,) exp [i(90 + k,z —wr)],
: (2.6.14)

where k, = 2an/L, and n is an integer. Substituting Eq. (2.6.14) into Eqs.
(2.6.8)-(2.6.10), and making use of Eqs. (2.6.11) and (2.6.12) we can show
that the Fourier amplitudes 6n2(r, k,), 8V,(r, k,), 8V, (@, k,), 6 V2, (@, k,),
and 8¢%(r, k,) satisfy '

0 s V2
—i(w —k, V3, —w,) 6n% + —: -g; (m%8vi)+ _%__ﬂ +ik,n% 8V:, =0,
(2.6.15)
. 0 Q ) o 3 SR
—Hw =k, V3, =2, )8V, — (€, +2w,) 8V gy = o o*,
s - 7 (26.16)
. 13 €y iR § ¢
(62—, V8, —90) VR + [6,0 + 1o (Pe3,)) 8V, = — = L
R P A 1]
(2.6.17)
[
—i(w =k, Vg, —00,) 5VE, =— —~ik, 84, (26.18)
T e ]
1 o b} Q ’22 Q Q Q
T 00— - k2 8¢° =—4n Z ey dny,  (26.19)

where the (7, k,) arguments of the perturbations have been suppressed. In Eqs.
(2.6.15)-(2.6.19), ¢, =sgne,, Q, = |e, | Bo/m,c, and the equilibrium
angular velocity profile, w(r) = V 34(r)/r, is related to the equilibrium density
profile n(r) by the radial force equation (2.6.3). The perturbations in density
and mean fluid velocities in Eqs. (2.6.15)-(2.6.18) can be eliminated in favor of
8¢°(r, k,). Poisson’s equation for the perturbed electrostatic potential can then
be expressed in the form

1For the representation in Eq. (2.6.14), note that —aa—t--> —iw, 2. i?, and %—) ik,

for each Fourier component, %
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2
Q2 wgzm ('] wpa 2
—=1{1-z St —k2 |1—-2 8¢
= ( A R L R
__ 288 I 3 | Yoo

o |— 2
roew-k, Vo, —fw, | 2 (€ally +200) |
(2.6.20)

where

1 9
V2 =(w —k, V5, —w,)? — (e, + 2w,) [eafla + P r? wa)] ,
(2.6.21)

and wp,(r) = 4mnl(r)efm,,. Equation (2.6.20) is valid for arbitrary wjq(r) and
w,,(r) consistent with the radial force equation (2.6.3). Operationally the
procedure is to solve Eq. (2.6.20) for §¢°(r, k,) and w as an eigenvalue problem.
The solution to Eq. (2.6.20) is accessible analytically only for certain simple
density profiles. As a first application of Eq. (2.6.20), the case in which the
density of each plasma component is constant in the column interior is
considered.

2.7 DISPERSION RELATION FOR A CONSTANT-DENSITY
PLASMA COLUMN

In this section use is made of Eq. (2.6.20) to obtain the dispersion relation
for electrostatic waves in a constant-density nonneutral plasma column.? !4
As illustrated in Figure 2.7.1, it is assumed that the density of each plasma
component is constant out to a radius 7 = R, and 1s zero beyond, that is,

n
ng =

0, R,<r<R, (2.7.1)

0<r<R,,

a?

InEq. (2.7.1),r =R, > R, denotes the radial location of a perfectly conducting
wall (see Fig. 2.7.1). It follows from Eq. (2.7.1) that wphe(r) = 4and(r)ez/m,,
is constant for each plasma component, with
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Fig.2.7.1 Plot of nd(r) versus for the constant-density profile in Eq. (2.7.1).
A grounded conducting wall is located at radius r = R, >Rp .

0<r<R,,

Wha(r) =
0, R, <r<R.. (2.7.2)
Furthermore, it follows from Eqgs. (2.6.3) and (2.7.1) that the equilibrium

rotation velocity c, (r) in the region 0 <r <R, can be expressed as [see Eq.
(2.2.12)]

v2
IRy 4me e 1.
W) = wE=— “2“ ;11 [1—22——“—”—"—] i (2.7.3)

2
n maQa

in the nonrelativistic, nondiamagnetic regime. Note from Eq. (2.7.3) that w,,
is independent of radius r. Therefore it follows from Eq. (2.6.21) that v; can
be expressed as

v, =(Ww—k V3, —,)? —(,Q, + 2w,)?, (2.7.49)
which is also independent of r. For the density profile given in Eq. (2.7.2),

9 .,

—_— —_— 12 —_
o Whe =~ @k 8¢ —R,). (2.7.5)
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Substituting Eq.(2.7.5) into Eq. (2.6.20), and making use of the constancy of
v2and wa, we find that Poisson’s equation for the perturbed potential
8¢2(r , ), can be expressed as

w2
r or a 2 or
Qz wz w?
— 1=z -2 s —r2 | 1-2 = ~ | 8¢
r a a (w—k, V5, )

54° _;a( o 1 2W,)
vi(w—k, V° —2w,)

5 —R,), (2.7.6)

where w, and 12 are defined in Eqs. (2.7.3) and (2.7.4). The right-hand side of
Eq. (2.7.6), which is zero except at r = R, corresponds to a perturbation in
charge density on the surface of the plasma column.

Inside the plasma column (0< r <R,), where wpa(r) w;a = const. [see

Eq.(2.7.2)], Eq. (2.7.6) can be expressed in the form

1 a a 2 2 Q2 2 Q

mer el L ,8¢ +T7%8¢"=0, 0<r<R,, 27.7)
where

o2
1—% P (2.7.8)
a (w—k, V2, —%uw,)?
T2 =_ kl; .

Outside the plasma column (R, <r <R.), where w},(r) = 0 [see Eq. (2.7.2)],
Eq. (2.7.6) reduces to Poisson’s equation in free space, that is,

_1___3_ 3 254% =
rvidew 5¢2 —k28¢"=0, R, <r<R.. (2.7.9)

Equations (2.7.7) and (2.7.9) are both forms of Bessel’s equation. The solution
to Eq. (2.7.7) that remains finite at r = 0 is

8¢5, = AT (TN, (2.7.10)




where J, is the Bessel function of the first kind of order £, and 4 = const.
(independent of 7). The solution to Eq. (2.7.9) that vanishes at the conducting
wall(r =R_,)is

¢t = CU(k,NK(K,R,) — K (k, DIk, R, R, <r<R,,
(2.7.11)

where I, and K are modified Bessel functions of order £, and C = const.
(independent of r).

Equations (2.7.10) and (2.7.11) constitute the solutions for the perturbed
electrostatic potentials §¢ in the inner and outer regions, respectively. The
boundary conditions at the surface of the plasma column (r =R ) remain to be
enforced. Continuity of §¢? atr =R, gives’

808), _ =Bl

which connects the solutions in the two regions. Substituting Egs. (2.7.10)
and (2.7.11) into Eq. (2.7.12) gives

, 2.7.12
&, @7.12)

J(TR)
I!Z(szp)KQ(szc) - KQ(kZRp)IQ(kZRc) ’

C
i (2.7.13)

which relates the constants C and A. A further relation between 8¢’izn and 8¢>0“t
is obtained by multiplying Eq. (2.7.6) by r, integrating fromr =R, — e to
r =R, + ¢, and taking the limit ¢ > 0. Making use of Eq. (2.7.12), we obtain

w?
_ _ po 0 .9
r=R, « r=R

Wi(e, 2y T 20,) 7
=2 [8¢7] z (2.7.14)

r=Rp & pi(w—k, V3, —w,)’

Equation (2.7.14) relates the discontinuity in perturbed radial electric field at
r = R to the surface charge density produced by the perturbation. Substituting
Egs. (2.7.10), (2.7.11), and (2.7.13) into Eq. (2.7.14) gives

TLSince the Fourier amplitude for the perturbed azimuthal electric field can be expressed as
8E® = —ig 5¢%/r, Eq. (2.7.12) is equivalent to the continuity of tangential electric field at
9 q

I':Rp.
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R Kok R )k, R,)— Ko(k,R,)o(k,R,)
zp K,Q(szC)IQ(kZRp)——‘K’Z(szp)IQ(kZRC)

_ l_za;a - J,'Z(TRP)___QE o642 +2w,) _
a p? P I(TR,) a2 (w—k, Vo, —fw,) X
(2.7.15

The “prime” notation in Eq. (2.7.15) denotes derivatives with respect to the
complete argument of the Bessel function, for example,

I;Z(szp) = [dljl(x)/dx]x = szp N

Equation (2.7.15) is the dispersion relation for electrostatic waves in a cold
constant-density, nonneutral plasma column. Tt relates the (complex) oscillation
frequency w to the azimuthal harmonic number £. the wave vector k, and
properties characteristic of the equilibrium configuration (e.g., 25‘2,,, W, Rp,
and R;). In geneial, it is not possible to obtain a closed analytic expression for
w from Eq. (2.7.15). However, Eq. (2.7.15) does simplify in various limiting
cases, which include the following:

(@ Rp=R, (plasma-filled waveguide),
(®) K2R} <1  (hmit of long axial wavelengths),
(© Rp <R, (limit of a thin beam).

In Sections 2.8, 2.9, and 2.11, Eq. (2.7.15) is analyzed in these limiting cases to
determine the dispersive properties of electrostatic waves propagating in a
constant-density plasma column.

2.8 NONNEUTRAL PLASMA-FILLED WAVEGUIDE

2.8.1 Electrostatic Dispersion Relation

In this section the dispersive properties of electrostatic waves propagating in a
nonneutral plasma-filled waveguide are discussed. As illustrated in Fig. 2.8.1,
it is assumed that the density of each plasma component is constant, and that
the radius of the plasma column extends to the conducting wall, that is,

R,=R,. (2.8.1)

The electrostatic dispersion relation for this equilibrium configuration can be
obtained by (@) taking the limit R, - R, in the dispersion relation, Eq. (2.7.15),
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Fig. 2.8.1 Plot of n(r) versus r for a constant-density plasma-filled waveguide
R, =R,).

or (b) requiring that the perturbed electrostatic potential vanish at the con-

ducting wall, that is, [§¢*], _ g _=0inEq. (2.7.10). Either approach leads
to the condition i

J(TR,) =0, (2.8.2)
where T is defined in Eq. (2.7.8). It follows from Eq. (2.8.2) that
T2R2=p5m’ m=la2s"'> (2.8.3)

where p,,, is the mth zero of Jo(x) = 0. Making use of Eq. (2.7.8), and intro-
ducing the effective perpendicular wavenumber k|, where

2
_Pem_

K=
1 Rg

, (2.8.4)

we can express Eq. (2.8.3) in the equivalent form

32

k2
0=1-=3 “pa “
kK e (w -, —k, V2, — w2,
54 0l

—— . 285
ke (w—fw, ~k, V) (28.5)



N 2.8 Nonneutral Plasma-Filled Waveguide 51

In Eq. (2.8.5), w7, = 4nfi,ed/mqy, k* =K% + k3 , @, is the angular velocity of
mean rotation defined in Eq. (2.7.3), and wqy is the vortex frequency ® defined
by

Wy, = (6,82, +2w,). (2.8.6)
Making use of Eqs. (2.7.3) and (2.8.6), we can express w2, as
w2, =(wi—wy)?. 2.8.7

Equation (2.8.5) is the dispersion relation for electrostatic waves in a non-
neutral plasma-filled waveguide. Note that the allowed values of k£, in Eq.
(2.8.5) are quantized by the effects of finite radial geometry [Eq. (2.8.4)].
The physical significance of the vortex frequency w,, which appears in Eq.
(2.8.5) can be summarized as follows. If a particle of species a is perturbed
about an axicentered circular orbit, then in a frame of reference rotating with
angular velocity w,, the perturbed orbits are circular gyrations with angular
frequency w,,, (see Section 1.2). It is important to note that Eq. (2.8.5) is
similar in form to the dispersion relation for a neutral plasma-filled waveguide.
In particular, Eq. (2.8.5) is reproduced identically if the replacements,

W= w—w, (2.8.8)
and
Q2 >w? (2.8.9)

av?
are made in the corresponding dispersion relation for a neutral plasma. Physi-
cally, it is very plausible that Egs. (2.8.8) and (2.8.9) are the correct algorithms
for recovering the nonneutral plasma dispersion relation from the neutral plasma
dispersion relation. In the nonneutral case, component « is rotating with
angular velocity w_ , hence w is Doppler-shifted to w — £w,, for spatial pertur-
bations with azimuthal harmonic number 2. Moreover, in a frame rotating with
angular velocity w,,, the particles in a nonneutral plasma are gyrating with
angular frequency w,; hence Qi 1s replaced by w},. Of course, the dispersion
relation for a neutral plasma-filled waveguide can be obtained directly from
Eq. (2.8.5) in the limit of equilibrium charge neutrality. Assuming w = wg,
it is readily verified from Egs. (2.7.3) and (2.8.6) that w_ = 0 and w}, = Q2
when Z, e n, = 0. Hence, for a neutral plasma, Eq. (2.8.5) reduces to

n
k2 w?
0=1-72 Y
Ko (w—k, V3, -2
k2 0—32
—_——y P (2.8.10)

K2 (w—k, V0 )2
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Equation (2.8.10) is the correct dispersion relation for a neutral plasma-filled
waveguide®” in which the plasma components have no mean azimuthal motion.t
The neutral plasma dispersion relation, Eq. (2.8.10), has been extensively
studied in the literature. Because of the similarity in structure between Eq.
(2.8.10) and the nonneutral plasma dispersion relation, Eq. (2.8.5), the waves
and instabilities characteristic of a neutral plasma-filled waveguide have their
analogs in the nonneutral case. Moreover, many of the quantitative results for a
neutral plasma (e.g., dispersion curves and stability criteria) can be applied
virtually intact in the nonneutral case, making use of the algorithms given in
Eqgs. (2.8.8) and (2.8.9). Because of the similarity between Egs. (2.8.5) and
(2.8.10), no attempt will be made here to catalog all of the interesting waves
and instabilities characteristic of nonneutral plasma-filled waveguides. Rather,
it is sufficient for present purposes to consider two examples that illustrate
(a) stable oscillations with Im w = 0, and (b) instability with Im « > 0, in a
nonneutral plasma-filled waveguide,

2.8.2 Stable Oscillations
As an application of the dispersion relation, Eq. (2.8.5), which corresponds to
stable oscillations with Im w = 0, consider the limit of a fixed (m; > ),
partially neutralizing, ion backoround* with density
n;=fma,. (2.8.11)

For a single component of electrons, Eq. (2.8.5) reduces to

o E_
=] ——
K (0=, =k, V) — i,
k2 w?
-= ke ~ (2.8.12)
B (w— Qw, —k, ng)
where
Q, @, e
W, = W = 1+ J1— -5 . (2.8.13)

Yir any of the plasma components is rotatmg in the fast rotational mode (wy = w}), then
Wy, = —€o 8, in the limit where T_e "n = 0 [see Eq. (2.7.3)]. In this case w must be
Doppler- shlfted to w + R¢, N, for the fast components in Eq. (2.8.10).

*Physically, a fixed ion background corresponds to examining Eq. (2.8.5) for frequencies
w far removed from any ion resonances.
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wl=(w!—w)=02 [1 —-@(1 ——f)] (2.8.14)
ev e e e .Q2 ° s

e

The solution to Eq. (2.8.12) can be expressed as
(w— %0, —k, V%)

1/2
_ Whe + W2, el - Kk 4w),wz, . 28.15)
2 1+kZ/k} (@3, + w?2,) o

If the equilibrium corresponds to a stow rotational mode (w, = w;), and charge
neutralization is complete (f= 1), Eq. (2.8.15) reduces to the correct result for
a netural plasma-filled waveguide,®” that is,
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@2, + Q2 kMk? 4w Q2
(w_szgz)z=—pe_m_i - Z/zlz —3 " ; 2 )
2 1+ K2k} (@h, +Q2)
(2.8.16)
as expected.
In the dispersion relation, Eq. (2.8.15), it is convenient to define
w=w—w, -k VS, (2.8.17)

where w' is the frequency of the perturbation viewed in a frame comoving with
the electron equilibrium configuration. The dispersion curves associated with
the normal modes in Eq. (2.8.15) are shown in Figs. 2.8.2 and 2.8.3, where w'?
is ploted versus k, [k, . The two cases, w?, > w?, (Fig. 2.8.2) and w3, <w?,
(Fig. 2.8.3), are distinguished. From Eq. (2.8.14) it is straightforward to

show that

2 —2 . . 22:’;6 < 2
Weg, > Wy, isequivalent to o “3=2f
e

, (2.8.18)

and
26;6, S 2
Q" 3-2f

w?, < B;e is equivalent to (2.8.19)

Of course, in order for the present analysis to be valid, the value of 2w?,/Q2
must be less than the maximum density for which equilibrium solutions exist.
The upper bound on density if obtained by requiring that the radical in Eq.
(2.8.13) be real; this gives the condition
202
pe 1
— < 2.8.20

z=
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Wpe + Wey
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Fig. 2.8.2 Plot of w = (w —w, —k, V' 3,)? versus k, /k, for 2 2elw,=1/2
(Eq. (2.8.15)].

It should be noted from Eq. (2.8.15) that the only dependence of w'? on
k} = p3,,/R2 is through the ratio kZ/k}. Therefore the dispersion curves in
Figs. 2.8.2 and 2.8.3 are universal, that is, for fixed values of ¢ w . and w7, the
curves are identical for all values of k2.
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Fig. 2.8.3 Plot of w"? = (w —w, —k, V2,)* versusk,fk, for w7 [}, =2
[Eq.(2.8.15)].

2.8.3 Electron-Electron Two-Rotating-Stream Instability

As an application of the dispersion relation, Eq. (2.8.5), which corresponds to
instability, consider the equilibrium configuration illustrated in Fig. 2.8.4T. The

TThe choice of equilibrium configuration with wo electron components can be motivated
as follows. Suppose that a nonneutral plasma equilibrium 1s already established with
electrons rotating in the fast rotational mode, w, = wy. Suppose also that a low-density
background gas of netural atoms is present, as will be the case in a laboratory experiment.
As ionization of the background gas procceds, the electrons and ions produced in this
process are essentially “‘born at rest.”” Under the influence of the radial electric field it is
expected that the electrons produced in the jonization process begin to E® X B, rotate in

the slow rotational mode with angular velocity w, = w;.
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Fig. 2.8.4 Electron density profiles for equilibrium consisting of two electron
components (& = e, e;) with constant densities 71, . and ﬁez and
rotation velocities wj, and w, respectively.

equilibrium consists of two components of electrons (e = e, , e, ) with constant

densities z1,, 12Ty and rotation velocities
w, =w}, for a=e,
(2.8.21)
w, =w;, for a=e,.

Asin Section 2.8.2, the positive ions are assumed to form a fixed (i, - =),
partially neutralizing background with density

=7, = (7, +7,,). (2.8.22)

The angular velocities of the two electron components, w; and w, are given by
Eq. (2.7.3) with B;e defined in terms of the toral electron density, that is,




+7,,). (2.8.23)

For present purposes, it is also assumed that there is no axial drift of the electron
components,

Ve, =0, a=e,e,. (2.8.29)

Because of the differential rotation of the two electron components, it is
anticipated that free energy is available to drive an electron-electron two-
rotating-stream instability,” at least in certain parameter regimes. In the limit
m; — o, Eq. (2.8.5) reduces to

0=1-— " “pe
k? a=e, e, (&J—'Q(«)Q)z —wjv
k2 32
z

w
= ¥ —B2 -, (2.8.25)
k? a=ene (w—Rw,)?

where w?  is defined in Eq. (2.8.14), and use has been made of Eq. (2.8.24).

In general, closed solutions for the complex osctllation frequency w are not
accessible from Eq. (2.8.25). However, the condition for Eq. (2.8.25) to support
unstable solutions (Im w = w, > 0) can be found exactly for the case of equi-
density electron components,

n, =n,,. (2.8.26)

€1
Making use of Eqs. (2.8.25) and (2.8.26), we obtain for the instability condition™

4% k2 K
pe [_;_lz+__J;_ ~ 1 - ]>1(for2=il,i'2,---),
K2 k(2 -4 )

(Wi —w3)?
(2.8.27)

where w7, is defined in Eq. (2.8.23), and §,; is the Kronecker delta.

For £ = 0, the solutions to Eq. (2.8.25) have Im w = 0, and there is no
instability. For & =t1, and 7le, ="e,, Eq. (2.8.27) implies two necessary
conditions for instability:

1 1
k2 >—k?, and N
3 Q “3-f

(necessary for £ = £1 instability).

(2.8.28)
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Note from Eq. (2.8.28) that the density threshold for € = *1 instability is quite
large, for example, 2epe /22 > 1/3 for f = 0. In obtaining Eq. (2.8.28), use
has been made of the definitions of w? in Eq. (2.8.13). Furthermore,
25,,8/{23 < 1/(1 —f) is necessary for existence of the equilibrium [see Eq.
(2.8.20)] . Denoting w = w, + iw,. the oscillation frequency w, and growth
rate «; for the unstable branch in Eq. (2.8.25) are plotted in Fig. 2.8.5 as
functions of the angle § = arc sin (k,/k), for the particular choice of parameters
2=1,f=0,A, =n,,and 25;/93 = 1/2. Note that | w; |y, 0.3 ©,, for
the parameters used in Fig. 2.8.5, thus indicating a rather strong instability.

w), = Re (W)

o=l
g=8in "(K;/K})—

Fig.2.8.5 Plots of oscillation frequency w, and growth rate w; versus @ = arc
sin (k,/k) for=1,f=0,n, =h,,,and 207, /9% = 1/2 [Eq.
(2.8.25)].

For |2|>2,and 7, =n,, , the density threshold for instability is larger than
that given in Eq. (2.8.28) for € = £1, but below the maximum limit for existence
of the equilibrium [2w2,/Q2 = (1 —f)™']. Whenever the inequality in Eq.
(2.8.27) is satisfied, Eq. (2.8.25) supports one unstable solution for a given
value of €. In the limit k2 /k? > 1, it can be verified that the maximum growth
rate for a mode with azimuthal harmonic number £ is
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W] max = [P (] —w))? w;elz + w;e / 4]

~ 8% (o} —w /A —52, [ 2}, (2.8.29)

where w? are defined in Eq. (2.8.13). For kZ/k} > 1, the corresponding
oscillation frequency in the unstable case is

w, =YW+ W) 2=29,/2 (2.8.30)

The examples discussed in Sections 2.8.2 and 2.8.3 in no way exhaust the
possible waves and instabilities characteristic of nonneutral plasma-filled wave-
guides. For example, it is evident from Eq. (2.8.5) that there can also be
instabilities associated with the relative azimuthal drifts of electrons and ions.
In this case the ion mass is treated as finite in Eq. (2.8.5), and only a single
component of electrons is required to produce the two-rotating-stream in-
stability. Furthermore, if there are relative axial drifts of plasma components
(e.g., VO, # V), Eq. (2.8.5) has unstable solutions that correspond to two-
stream instabilities produced by the relative axial drifts.*

In deriving the dispersion relation, Eq. (2.8.5), it was assumed that R, = R,..
In concluding this section, it should be pointed out that Eq. (2.8.5) is also
approximately correct when R, # R, provided the vacuum gap between the
conducting wall and the surface of the plasma column is sufficiently small, that
is, (R —R,)/R. <1. For example, if 8 = 0 and kJR% <€ 1, a careful examina-
tion of Eq. (2.7.15) shows that Eq. (2.8.5) is a valid approximation for the
electrostatic dispersion relation as long as

Pomn(R, /Rp)< 1. (2.8.31)
Form = 1, Eq. (2.8.31) reduces to

Poifn (R, [R,)~24%n(R, [R,)<]1. (2.8.32)

TSee Section 2.9 for a discussion of electron-ion two-rotating stream instabilities™ in
nonneutral plasma columns with R p < R, and ZG;Q/.Q; <1.

*See Section 2.11 for a discussion of two-stream instabilities produced by a relativistic
electron beam drifting along the axis of a finite-radius plasma column.*®
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2.9 SURFACE WAVES ON A NONNEUTRAL PLASMA COLUMN
2,9.1 Electrostatic Dispersion Relation

In this section the electrostatic dispersion relation, Eq. (2.7.15), is examined
in the limit of long axial wavelengths,*

k, =0. (29.1)

The equilibrium configuration is itlustrated in Fig, 2.7.1. It is assumed that the
density of each plasma component is constant, and that the radius of the plasma
column does not extend to the conducting wall, that is, R, <R,. Fork, =0,
Eq. (2.7.15) does not support normal-mode solutions when & = 0. Therefore
the subsequent analysis in Section 2.9 is limited to perturbations with azimuthal
harmonic number 8 # 0. In the limit £, - 0, Eq. (2.7.15) reduces to

2 2
. (R, /R +1 P . Woee
R, /R —1 @ (w—2w,)* — (6,2, + 2w, )

o_a;a(eaﬂa +2w,)
[(w = 0w, ) — (6,24 +2w,)*] (w—2w,)

=X (29.2)
«

for # 0. In Eq. (29.2), w,, = 4n7i €2 /m,, where 7, = const. is the density
of component a (see Fig. 2.7.1), and w,, is the angular velocity of mean rotation
defined in Eq. (2.7.3). The contributions on the right-hand side of Eq. (2.9.2)
are associated with perturbations in charge density which accumulate at the
surface of the plasma column. In particular, the surface terms arise from the
discontinuity in w2 (r) atr = R, [see Eq. (2.7.5) and Fig. 2.7.1] . Since the
surface contributions in Eq. (2.9.2) play such an important role in determin-
ing the normal mode and stability properties of the equilibrium for k, = 0, it

is appropriate to refer to the k, = 0 normal modes determined from Eq. (2.9.2)
as surface waves.t Dividing Eq. (2.9.2) by £ and rearranging terms, we can
express Eq. (2.9.2) in the compact form®

wpell —(R, /R )]

O Mo ko=t F (i, T a0 - @9

In a neutral pla}sma w.ith Z, e,fi, = 0and w, = w; =0, Eq. (2.9.3) supports
only stable solutions with Im w = 0. The situation is considerably different in a

TTgis terminology is further supported by the fact that the perturbed electrostatic potential
5¢° tends to be peaked around r = Rp for w satisfying Eq. (2.9.2).
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nonneutral plasma. In this case the equilibrium radial electric field £ ? will
geneially produce azimuthal drift velocities that vary for different plasma
components, for example, w, will be different for electrons and ions [see Eq.
(2.7.3)]. This differential rotation can provide the free-energy source to drive
two-rotating-stream instabilities for k, = 0 surface waves. Asin Section 2.8, no
attempt will be made here to catalog all of the interesting waves and instabilities
associated with Eq. (2.9.3). Rather, it is sufficient for present purposes to
consider a few examples that illustrate (¢) stable oscillations with Im «w =0
and (b) instability with Im w > 0.

2.9.2 Stable Oscillations
As a first application of Eq. (2.9.3) corresponding to stable oscillations,

consider a neutral plasma with 2,7, e, =0 and , = w; = 0 [see Eq. (2.7.3)].
For w, = 0, Eq. (2.9.3) reduces to

B [~ Ry/R, )

0= o+ e,y

(2.9.4)

The solutions to Eq. (2.9.4) have Im w = 0, that is, the k, = O surface waves on
a neutral plasma column do nrot exhibit instability. For a two-component
neutral plasma, the exact solutions to Eq. (2.9.4) are

w=0,

w==—"Ls

2

B [ =

R 22 172
(Q, — Q) +4Q,9Q; + 2%, +wp) [1 _(If) ] z ,
(2.9.5)

where Q, =eBo/m,c and &; = e,Bo/mc are the electron and ion cyclotron
frequencies, respectively.

As a second application of Eq. (2.9.3) corresponding to stable oscilltations,
consider a nonneutral plasma with no ions (7; = 0), and a single component of
electrons rotating with angular velocity w, = w?, or w, = w; , where

Q 22,
wi=—" 3 I [1 - Qf"] : (2.9.6)
€

In this case Eq. (2.9.3) reduces to




W [1 =R, /R)*Y .
C 2Aw —Rw,) [(w—Rw,) + (-8, + 2w,)]

0=1 (29.7

The solutions to Eq. (2.9.7) have Im w = 0, that is, the k, = 0 surface waves on
a nonneutral plasma column consisting of a single component of electrons do
not exhibit instability. The exact solutions to Eq. (2.9.7) are

2 — 29 172
Q, Q, w},e R,
w—SZwe+(—2-—we) t;(—z—we +—2— 1- "RT .
(2.9.8)

In the limit where the conducting wall is located at infinity R, - o, it follows
from Egs. (2.9.6) and (2.9.8) that the normal mode frequencies are

w=E0-1Nw,+Q,, and w=QR-1)w,. (2.9.9)

2.9.3 Electron-Ion Two-Rotating-Stream Instability

As an application of Eq. (2.9.3) corresponding to instability, consider a two-
component nonneutral plasma consisting of electrons and ions. The ions and
electron densities are related by

=17, (29.10)

3

where f = const. = fractional neutralization. Single ionization is assumed. It is
readily verified from Eq. (2.7.3) that the two allowed values of equilibrium
rotation velocity are

. 2 22, 1
we=we=7 1% l_—ﬂg—(l_f) (2.9.11)
for the electrons, and

[

Q
W, =w Y

~

Q3, m; Y2
1 1+—Qz—‘m—(l - (29.12)

e

for the ions. It is assumed that the equilibrium consists of a single component
of elections rotating with angular velocity w, = w; or w, = w?,, and a single
component of ions rotating with angular velocity w; = w; or w; = w}. For
purposes of the stability analysis, it is not necessary to prescribe whether the



electrons or ions are in the fast rotational (w,, = w,) or the slow rotational
(w, = w;) mode.

Since w, and w, are generally different, it can be anticipated that Eq. (2.9.3)
supports unstable solutions with Im w > 0, corresponding to a two-stream
instability produced by the differential rotation of electrons and ions. For
present purposes, the analysis of Eq. (2.9.3) is limited to the fundamental ( = 1)
mode. Substituting £ = 1 in Eq. (2.9.3), it is straightforward to show that Eq.
(2.9.3) can be expressed as

1 _ a;e + azi
I=@®R,R.) Aw—w)(w—w?) 2Aw—w)(w—w)’

(2.9.13)

where w; and wj are defined in Egs. (2.9.11) and (2.9.12). For a neutral
plasma with f = 1, the solutions to Eq. (2.9.13) reduce to Eq.(2.9.5) for2 =1,
and there is no instabiity. Furthermore, for a pure electron gas with f= 0, the
solutions to Eq. (2.9.13) reduce to Eq. (2.9.8) for £ = 1, and there is no in-
stability. For f# 0 and f# 1, however, Eq. (2.9.13) has an unstable root with
Im w > 0, at least in certain parameter regimes.

To simplify the stability analysis of Eq. (2.9.13), consider a low-density non-
neutral plasma with

32

;‘” (1-f)<1. (2.9.14)

Making use of Eqgs. (2.9.11) and (2.9.14), we can express w¥ in the approximate
forms

' wi=Q, (2.9.15)
and
—,
- Ype
wg =55 1= (2.9.16)

For low densities, note from Eq. (2.9.16) that w} is the E° X By rotation
velocity, that is, w; = — cE. (PfrB, forr <Rp. For frequencies well below the
electron cyclotron frequency,

lwl<Q,, (2.9.17)

43
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Eq. (2.9.13) reduces to

; @, @,

1—(12,,/&)2= w—w; Aw— w7 ) (w—w!)

(2.9.18)

where w7 and w are defined in Egs. (2.9.12) and(2.9.16). Equation (2.9.18)
was first derived by Levy, Daugherty, and Buneman™ and is identical to their
Eq. (58). For a pure electron gas with f = 0, the solution to Eq. (2.9.18) is

w=0,=w; R, [R,). (29.19)

If a low-density ion component is present (0 <f <€ 1), Eq. (2.9.18) has one un-
stable solution with Im ¢ > 0 provided Q2 = w; , that is, provided there is a
resonance between the electron diocotron wave and the azimuthal motion of
the ions.T For f< 1, it can be shown that instability exists only if Qp and w;
differ by an amount proportional to +/f. Furthermore, for f < 1 and Q; very
close to w7, itcan be shown that the growth rate is approximately ™

L R\ [ R2p2R?
csime=e\'"re ) \-rre
e pifte

Note from Eq. (2.9.20) that the growth rate is of order Gp,- times a geometric
factor.

Since Eq. (2.9.18) is a cubic equation for w, it can be solved exactly for the
complex oscillation frequency as a function of the parametersf, (R ,/R, ),
w,, and so on. It is adequate for present purposes, however, to determine the
range of system parameters for which there is instability (Im « > 0). Shown in
Fig. 2.9.1 are stability-instability boundaries for

2

(2.9.20)

i

. m, 2Q%/w?
] e (4
versus A= —r

fE e m; 1 —f ’

~
-

for three different values of R,/R .. For a given value of R,/R.,Eq.(2.9.18)
gives pure oscillatory sclutions (Im w = 0) for values of f and A falling below
the curve. For values of fand A above the curve, Eq. (2.9.18) has one unstable
solution with Im «w > 0. Evidently, if f = 0 or f = 1(A = ), there is no in-
stability. Fuithermore, for given values of f and A, the instability is stabilized if
the conducting wall is sufficiently close to the plasma column, that is, if Rp/Rc
is sufficiently close to unity.

TNote from Eqgs. (2.9.12) and (2.9.19) that w"i < 0 whereas w;>0and Qg > 0 (for
B, > 0).
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Fig.2.9.1 Stability-instability boundaries in (f, A) parameter spaces for (2)
Rp/R. =0.5,(b) R,/R, =0.75,and (¢) Rp/R, =0.9. Fora
given value of R,,/R,, Eq. (2.9.18) has pure oscillatory solutions
(EIm w = 0) for values of f and A falling below the curve. For
values of f and A above the curve, Eq. (2.9.18) has one unstable
solution with Im «w > 0. [After R. H. Levy et al., Phys. Fluids 12,
2616 (1969).]

One of the most important features of the electron-ion two-rotating-stream
instability is that it can exist for low densities [Eq. (2.9.14)] and for small
values of f <€ 1. There is no density threshold for instability, as is the case for
the electron-electron two-rotating-stream instability in a nonneutral plasma-
filled waveguide (Section 2.8.3). Note alsc that the characteristic growth rate
of the instability is substantial [Eq. (2.9.20)].

In concluding this section, it is impoitant to note that the present discussion
of two-rotating-stream instabilities for k, = 0 surface waves is by no means
complete. For example, Eq. (2.9.13) also predicts instability if the assumptions
of low density [Eq.(2.9.14)] and low frequency [Eq. (2.9.17)] are relaxed.
Furthermore, the electron-ion two-rotating-stream instability can also exist
for 2 2.7 The corresponding growth rates, however, are smaller than those
for the fundamental ({ = 1) mode. Finally, if no ions are present in the system
(f=0), but two components of electrons are rotating with different angular
velocities w*, and w; [Eq. (2.9.6)], then Eq. (2.9.3) can have unstable solutions
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1

corresponding to an electron-electron two-rotating-stream instability.®® Although
the growth rates are much larger for the electron-electron instability [(Im w)
~,], the density threshold is also larger (25;,/9: > 3/4, for equidensity
electron components).

max

2.10 THE DIOCOTRON INSTABILITY

2.10.1 Poisson’s Equation for a Low-Density Electron Gas

In this section, Poisson’s equation for the perturbed electrostatic potential,
Eq. (2.6.20), is used to study the stability properties of low-density, pure
electron gas equilibria with

w;e(r) <€ 9.3 , (2.10.1)
and

n2(r) =0, (2.10.2)

where w),(r) = 4nnl(r)e?/m,, and Q, = eBy[/m,c. It is assumed that the axial
wave vector of the perturbation is equal to zero,

k,=0, (2.10.3)
and that the frequency of the perturbation is low with
lw— R (r)|? <Q2. (2.10.4)

Consistent with Egs. (2.10.1) and (2.10.4), it is also assumed that the electron
column is rotating in the slow rotational mode with angular velocity

w, () =w,(r). (2.10.5)

For low densities, w,(r) can be expressed in the approximate form [see Eq.
2.2.8)]

U T AP CE} ()
we(r)—r29 dr'r'el (r) =— B, (2.10.6)
e
0

where E(r) is the equilibrium radial electric field [see Eq. (2.1 .2)]. Note from
Eq. (2.10.6) that the mean motion of the electron column corresponds to an
E® X By rotation about the axis of symmetry.




Making use of Eqs. (2.10.1)-(2.10.5), we can express Poisson’s equation for
the perturbed electrostatic potential, Eq. (2.6.20), in the approximate form!%¢

2 B0 B0 R 8 3 ,

ar o 8¢ r28¢ TR w—i() ¥ e,
(2.10.7)

where Im w > 0,T and 5¢’l 80%(r, k, = 0). In Eq. (2.10.7), w? 2e(r) and w ()

are arbitrary functions of r consistent w1th Eq. (2.10.6) and wp,(r) = 0. With-

out loss of generality, we assume that 2 2 1 throughout the remainder of
Section 2.10.

4
r

2.10.2 A Sufficient Condition for Stability

It is straightforward to show from Eq. (2.10.7) that the equilibrium configura-
tion is stable if dw3,(r)/ar <0.'° In other words, Eq. (2.10.7) supports no
unstable solutions with Im w > 0¥ if w,,e(r) is a monotonically decreasing
function of r,

)
5 @) <0. (2.10.8)

It is assumed that a grounded conducting wall is located at 7 = R,,. Multiplying
Eq. (2.10.7) by (5¢")* [where (5¢°)* is the complex conjugate of 8¢%] and
integrating from 7 =0 tor =R, gives

0 =D(w) fdrr{‘—&qb’l

|8¢”| K
__f T T O, (2.10.9)

22
r

o

where Im w > 0, and the boundary conditions, [5¢*%],_ g, =0and
[r36¢?/dr] = = O, have been enforced in obtaining Eq. (2 10.9). In Eq.
(2.10.9) the complex oscillation frequency can be expressed as

w=w, +iw, (2.10.10)

TThe dispersion relation can be defined in the region Im w < 0 by appropriate analytic
continuation.

*Keep tn mind that the time variation in perturbed quantities is assumed to be proportional
to exp (—iwt). Therefore,Im w = w; > 0 corresponds to instability.
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where w, amd w; are real. Equating to zero the real and imaginary parts of Eq.

(2.10.9) gives
R, 2
= f drr ; i

0
___j’ 186 *lw, — 2w, ()] 3

[, —2;()]? + ? ar “pe

2 2
fz'g
+=|s
r2¢

P
or 3¢

2 (1), (2.10.11)

R,

) 5o2 2 2
0=wg- / dr Ll TW20. (21012)
0

[w, —2w;(]? + w}

If 33 ,(r)/3r < O over the interval 0 <7 <R_, the integral in Eq. (2.10.12) is
negatlve Therefore it follows from Eq. (2. 10 12) that the dispersion relation
has ro unstable solutions with Im w = w; > 0 if w3,(r) is a monotonicatly
decreasing function of 7.1

Equation (2.10.8) is a sufficient condition for stability of the equilibrium
configuration. Therefore a necessary condition for instability can be stated
as follows:

—-w? () changes sign on the interval 0 <r <R_. (2.10.13)

In other words, Eq. (2.10.7) has unstable solutions with Im «w = w, > 0 only if
the radial density gradient changes sign on the interval 0 <r <R, for example,
if wf,e(r) corresponds to 2 hollow electron beam equilibrium. It should be
emphasized that Eq. (2.10.13) is a necessary condition, but not a sufficient
condition for instability. Not all equilibrium configurations in which
(r)/ar changes sign are unstable. Making use of the definition of w, (7)
in terms of wje(r), we can state the necessary condition for instability, Eq.
(2.10.13), in the equivalent form

TSimilarly, if w;,e(r) is 2 monotonically increasing function of r with aw?2_(r)/dr > 0 over
the interval 0 <r <R, the dispersion relation, Eq. (2.10.9), has no unstable solutions with
Imw= w; > 0.
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gr- % -a%- [r*w; (r)] changes sign on the interval 0 <r <R,.

(2.10.14)

It is evident from Eq. (2.10.14) that a shear in angular velocity w; (7) is required
for instability.

2.10.3 Stability of Hollow Beam Equilibria

As an example of an equilibrium configuration that exhibits the diocotron
(slipping stream) instability,®®7*!! consider the hollow electron beam equili-
brium illustrated in Fig. 2.10.1.

H
H

— 4
1 Wpe -~~~ Conducting
» wall
wpe (1)

=

o

o
o)
o

p Re

y —

Fig. 2.10.1 Plot of w,(r) versus 7 for the hollow electron beam profile in Eq.
(2.10.15). This equilibrium configuration is susceptible to the
diocotron instability.

The density profile has the form
0, 0<r<R, (regionl),
Wi (r)={ wi,, Ro<r<R, (regionI), (2.10.15)
0, R,<r<R, (regionll),

where w2, = 4n7n,e? /m, = const. Evidently, for the density profile given in Eq.
(2.10.15), 3co3(r)/0r can be expressed as
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2 ) =TI —R) —5C—R,)]. (2.10.16)

Moreover, it follows from Egs. (2.10.6) and (2.10.15) that the angular velocity
profile is given by {see also Eq. (2.2.16)]

w?, R}
wi0=55 (177 ) Ro<r<g,. (2.10.17)

Note from Eq. (2.10.17) that 8w (r)/dr # 0 within the beam, that is, there is a
shear in angular velocity of mean rotation provided Ry # 0.

Except atr =R, and r = R, Poisson’s equation for the perturbed electro-
static potential reduces to [see Egs. (2.10.7) and (2.10.16)

13 2 2 0
. . —_—35=0.
- o 5¢° 3 ¢ =0 (2.10.18)
Therefore the radial eigenfunction in region II can be expressed as
5¢° =Brt+—, Ro <r<R (2.10.19)
¢}, =Br , Ro s 10.

where B and C are constants. The eigenfunction in region I that remains finite at
r = 0 and is continuous with §¢% at r = R, is (2 > 1 has been assumed)

s¢f= <B+ ot )r" 0<r<R,. (2.10.20)
0

The eigenfunction in region III that vanishes at » = R, and is continuous with
8¢f atr =R, is 2 .
R~

22 1 (2.10.21)

5o, = (BRZ+ c) ——~R22 .

p

The constants B and C in Egs. (2.10.19)-(2.10.21) can be related by

integrating Eq. (2.10.7) across the discontinuities atr =R, and r =R,.

Multiplying Eq. (2.10.7) by r, integrating fromr =R, —etor= R, +e,

and taking the limit € - 0 gives
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Q.50 _ d ¢ 0
Re [ar 8¢m] R & [3;5‘1511] r=R
r= = '

14
= 2[6¢Q] r=Rp

Wpe

Q [w—2w; (R,)]

Equation (2.10.22) relates the discontinuity in radial electric field atr =R, to
the perturbation in surface charge density. In a similar manner, multiplying
Eq.(2.10.7) byr,integrating fromr = Ro — e tor = Ry + €, and taking the limit

€ >0, gives
9 .0 AP
R, [E 8¢[[] _Ro [’5; 8¢1]
r=Ro r=Ro

w?
N 2 pe
- Q[6¢ ]r_—_Ro Qe[ Q _e(Ro)] - (2.10.23)

(2.10.22)

Making use of Eq. (2.10.17), we can express the rotation frequencies that occur
in Egs. (2.10.22) and (2.10.23) as

R2
w;(R,)=wp (1 —R—: , (2.10.24)
D
W, (Ro)=0, (2.10.25)
where wp, is defined byJr
o2
wp = 5—5—— (2.10.26)

Substituting Egs. (2.10.19)~(2.10.21) into Egs. (2.10.22) and (2.10.23) and
making use of Eqgs. (2.10.24)-(2.10.26) results in the following eigenvalue
equation for w:106

(w/wp)* —b(w/wp)+c=0, (2.10.27)

R? R R}
b= |1 —F + R" - R2E ) (2.10.28)
D c c
R? RzQ Rzg Rzg
c=R (1———2) (1— :Q —(1—% I——%)_ (2.10.29)
RP Rc Rp Rz

Equation (2.10.27) is a quadratic equation for the complex eigenfrequency w.
Its solution is

where

TNote from Eqgs. (2.10.17) and (2.10.26) that wp, is the E° X B, rotation velocity for a
solid electron beam (R, = 0).
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w= -wzi [b + (b® —4c)"2] . (2.10.30)

If b? > 4c, the oscillation frequencies defined in Eq. (2.10.30) are real
(Im w = 0), and the equilibrium configuration is not unstable. From Egs.
(2.10.28) and (2.10.29), the condition for stability (b* = 4¢) can be expressed
in the equivalent form

R} z
[-Q (1 - R—2> R2® +2R2® — R2% —Rg”]
D

2

> 4RPFR: ( R — R;ﬂ) , (2.1031)

Evidently, if Ry = 0 (which corresponds to a solid electron beam), or R s =R
(which corresponds to a hollow electron beam with outer radius extending to
the conducting wall), the inequality in Eq. (2.10.31) is trivially satisfied, and
there is no instability (see Section 2.10.2).

If the inequality in Eq. (2.10.31) is violated (b* < 4¢), the oscillation fre-
quencies in Eq. (2.10.30) are complex and form conjugate pairs. Defining
w = w, + iw,, where w, and w, are real, we obtain for Eq. (2.10.30)

c

r

w, = %bwn, (2.10.32)

w0 =t (e =BV wp, (2.10.33)

where 4¢ >b? is assumed. The solution with Im w = w; > 0in Eq. (2.10.33)
corresponds to instability. Note from Egs. (2.10.32) and (2.10.33) that w, and
w; are each of order wyy times a geometric factor.

For £ = 1, it is important to note that Eq. (2.10.31) reduces to

(R? —R3)* (R —R3)* >0. (2.10.34)

Evidently, Eq. (2.10.34) is always satisfied, and the system does not exhibit
instability for = 1. For 2 =2, Eq. (2.10.31) can be expressed as

2 2> Ro Rc 2
Ry +R0/2E-R—p R; . (2.10.35)
The inequality in Eq. (2.10.35) is violated for sufficiently large Ro/R,, and/or
small R,/R,., in which case the system is unstable for £ = 2. Equation (2.10.31)
can be used to obtain stability-instability curves as functions of the parameters
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RP/RC and Ro/R_,, for various values of harmonic number 2. Shown in Fig.
2.10.2 are the stability-instability curves for & = 2, 3, 4. Only the region above

1.O T T T T T
L' Stable 4
B | _
| 2=2 un=- j =4 i
stable,
1 223 }
o 05 .
o
~ -
[«%
o
o I | A 1 1 i 1 1 1
o} 0.5 1.0
Ry /R, —>

Fig.2.10.2 Stability-instability curves in (R,/R,, Ro/R ) parameter space for

’ (@ 2=2,(b) €=3,and (c) L =4. For a given value of £, Eq.
(2.10.27) has pure oscillatory solutions (Im w = 0) for values of
Rp/R. and Ro /R, falling above the curve. For values of Rp/R,
and Ry/R, falling below the curve, Eq. (2.10.27) has one unstable
solution with Im «w > 0. [After G. S. Janes et al., Phys. Rev. 145,
925 (1966}).]

the 45° line in Fig. 2.10.2 has meaning, since R, > R;. For agiven value of ¢,
the region of parameter space above the curve corresponds to stability (Im w
= (), whereas the region between the curve and the 45° line corresponds to
instability (Im w > 0). Evidently, for a fixed value of R¢/R,, a sufficiently
large value of R,/R,. assures stability. Alternatively, for a fixed value of

R, /R, asufficiently small value of Ro/R, assures stability. In the nonlinear
regime, it is reasonable to speculate that the diocotron instability is stabilized
by a radial diffusion of the electron density profile, which results in an increase
in the effective value of R, and/or a decrease in the effective value of Ro. In
other words, 1f the nonlinear 1esponse of the electron density profile to the
unstable field perturbations is calculated, it can be anticipated that the density
profile adjusts to alleviate the instability.
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2.10.4 Resonant Diocotron Instability

For the hollow beam equilibrium considered in Section 2.10.3, the diocotron
instability is strong, since the growth rate and oscillation frequency are compar-
able in magnitude [i.e., w; = 0(w,)] in the unstable regime [see Egs. (2.10.32)
and (2.10.33)] . This is due to the large density gradient at 7 = R, that drives
the instability (see Fig. 2.10.1). Diocotron instabilities with small growth rates,

w;
-&_’rl <1, (2.10.36)

can also exist in a low-density nonneutral plasma provided the density gradient
that drives the instability is sufficiently weak.''®
A case in point is illustrated in Fig. 2.10.3. In the absence of the density

Conducting
wali

O NN NN NN

Fig. 2.10.3 Plot of w;e(r) versus 7 for an equilibrium configuration that is
susceptible to the resonant diocotron instability. The small density
bump corresponds to a halo of fast electrons encircling the main
column with angular velocity w3 (r) = Q;1r 2[5 dr' r'whe(r').

If the resonant radius r,, determined from Eq. (2.10.45), falls in
the region of positive slope, [aw M/ar},_, >0, then Im w
= w,; >0, and the equilibrium is unstable [Eq (2.10.44)].

bump in the interval R, <r <R, the equilibrium configuration in Fig. 2.10.3
is stable with w; = 0 and

w,=wp[—1+R, /R)?M]. (2.10.37)




Equation (2.10.37) follows directly from Egs. (2.10.27)-(2.10.29) with R, = 0.
The mode in Eq. (2.10.37) corresponds to a surface wave associated with the
discontinuity in density at the surface (r = R, ) of the main plasma column. The
addition of the density bump in Fig. 2.10.3 leads to the possibility of instability
since awge(r)/ar changes sign in the interval R, <r <R.. [Note that this small
density bump corresponds to a halo of fast electrons encircling the main column
in Fig. 2.10.3 with angular velocity w3(r) = Q;'r2 [ ar' r'w;e(r').] Since
the density bump is small and the corresponding spatial gradients are weak, it is
anticipated that the growth rate w; is small and that the oscillation frequency
w, is given by Eq. (2.10.37) to a good approximation.

The procedure for determining w; in circumstances where |w,/w, | €1 can
be summarized is as follows. The right-hand side of Eq. (2.10.9) is denoted by
D{(w) = D(w, +iw,;). Taylor-expanding D(w, + icw,) for small w;, and dividing
D(w,) into its real and imaginary parts according to D(w,) = D,(w,) + iD(w,),
we can express Eq. (2.10.9) as

0= [D,(w,) —w, %—Di(wr)] +i [D,.(w,) +w, %D,(w,)] Fo

(2.10.38)
where
R, 2
2 9
= 9.9 8 22_2|5¢| P B .2
D(w,) ._fdr{r P 8¢7| + r[5¢ I R, o =800 o Wy (1)
0
(2.10.39)
and
RC
_m 5622 _ 9 .
Dyw,) = aQ dr16¢*1" 8[w, —Rw (] -a-;wpe(r). (2.10.40)
(4
0

In Eq. (2.10.39), P denotes the Cauchy principal value. In obtaining Egs.
(2.10.39) and (2.10.40) use has been made of the Plemelj formula,

tim L =7

§+0, w, —Rw (r) +id - w, — W, (r) —in 8w, — 2w, ()],

(2.10.41)
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to evaluate

D/(w,) +iDfw,)= lim D(w, +i5).
6—>0+

[Keep in mind that D(w) is defined in Bq. (2.10.9) for Im w >0.]

Since the spatial gradients are gentle in the vicinity of the density bump, both
w; and D (w,) are small, and the term w; 0D (w,)/3w, can be neglected in
comparison with D,(w,)} in Eq. (2.10.38). Setting the real and imaginary parts
of Eq. (2.10.38) equal to zero then gives

D (w)=0 (2.10.42)
and

Dfw,)

= B Yo,

(2.10.43)

Equation (2.10.42) can be interpreted as the dispersion relation that determines
the oscillation frequency w,, assuming that the eigenfunctions §¢% are known
[see Eq. (2.10.39)] . Equation (2.10.43) determines the growth rate ;. Carry-
ing out the r integration in Eq. (2.10.40), it is straightforward to show that Eq.
(2.10.43) can be expressed as (2 = 1 has been assumed)

150" 8¢2—~l2 —a—wz (YJ
m | 3w (r)for| or ~P€ r=r
“i= R, ’

186512 8
P [ o —aror
0

(2.10.44)

where w, is the solution to Eq. (2.10.42), and the resonant radius 7, is deter-
mined from

0=w, —fw_(r,). (2.10.45)

It is assumed that r, falls in the vicinity of the density bump in Fig. 2.10.3.
Note that Eq. (2.10.45) corresponds to a resonance between the mode (w,, £)
and the equilibrium (E® X By ) dnft motion of electrons at r = r. For the
density profile illustrated in Fig. 2.10.3, the denominator in Eq. (2.10.44) is
negative. Therefore the expression for the growth rate given in Eq. (2.10.44)
corresponds to instability («; > 0) or stability (w; < 0) accordingly as
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(9w (r)/or] r = . > 0 or [8e}e(r)/3r], -, <O, respectively. The similarity
in structure between Eq. (2.10.44) and the Landau damping increment!3s for
long-wavelength electron plasma osciallations is striking. Here [aw,z,e(r)/ar] rerg

plays the role of [aF;o(u)/au] = wpeflkls that 1s, the instability is driven by
configuration-space gradients rather than velocity-space gradients.

[t is evident from Eqgs. (2.10.39), (2.10.42), and (2.10.44) that the eigen-
functions 8¢° are needed in order to evaluate w, and w, explicitly. In general,
this requires a detailed investigation of Poisson’s equation for the perturbed
potential, Eq. (2.10.7). However, for the gentle-bump configuration in Fig,
2.10.3, only a small error 1s incurred in calculating w, and w; if 8¢° is taken
to correspond to the eigenfunctions in the absence of the bump, that is,

56t = Br®, 0<r<R,, (2.10.46)

28 _rZQ

6% = BR2Y :

- R_gg_—-R—;Q;E’ R, <r<R,. (2.1047)

Equations (2.10.46) and (2.10.47), which follow from Egs. (2.10.19) and
(2.10.21) with C = 0, are the eigenfunctions for a solid beam (R, = 0).
Approximating dwhe(r)/or = — whe 8(r — R,) in the integrand in Eq. (2.10.39),
and making use of Eqs. (2.10.46) and (2.10.47), it is straightforward to show
that the solution to D(w,) =0 [Eq. (2.10.42] isw, =wp[8—1+ (Rp/Rc)”z] )
which is identical to Eq. (2.10.37), as would be expected. Approximating

32, (r)/ar = —wje 8(r — Rp) in the denominator in Eq. (2.10.44), we can
express the growth rate w; as

L
[ 10w, (Nfar| or ‘*’pe(’)] rar,

w=£
N

! |68 |2
o2 r=Rp ,
P Llw, — 20 (R,

To sufficient accuracy for present purposes, w,(r) can be evaluated in Eq.
(2.10.48) in the absence of a density bump. Making use of Eq. (2.10.6), we
can express the resulting expression for w_ (7) in the region7 > R, as

(2.10.48)

R2
We(r) = wp L2 r>Rr

(2.10.49)
r'l

p)




v

where wp) = w}./2Q,. Substituting Egs. (2.10.37) and (2.10.49) into the
resonance condition, Eq. (2.10.45), gives
2R?
2 P
= . (2.10.50)
C =1+ (R,R®

Note from Eq. (2.10.50) that r, >R for 22 1. When Egs. (2.10.46), (2.10.47),
(2.10.49), and (2.10.50) are substxtuted into Eq. (2.10.48), the growth rate
w; reduces to'1°

R 22-3 r \22792 R
wreni(5) T L(R) T EEe]

p r=rg

(2.10.51)

correct to lowest order. As illustrated in Fig. 2.10.3, if r, is located in the region
of positive slope, [3w3,(r)/dr] ,— ,, > 0, then w; > 0, which corresponds to
instability. However, if , is located in the region of negative slope,

[8wje(r)/or] , —,, <0, then w; < 0 and the wave perturbation damps. Note
from Eq. (2.10.51) that | w; | € wy, for small values of the density gradient.

2.11 INTERACTION OF RELATIVISTIC ELECTRON BEAMS
WITH PLASMA

2.11.1 Equilibrium Configuration and Electrostatic Dispersion Relation

In this section the electrostatic dispersion relation, Eq. (2.7.15), is generalized
to allow for relativistic axial motions of the plasma components along the ex-
ternal magnetic field Boe,. The following simplifying assumptions are made
regarding the equilibrium configuiation [see Section 2.1]. First, it is assumed
that the equilibrium axial velocity profiles are independent of distance  from
the axis of symmetry of the plasma column, that is,

By, = V3, = const. (independent of 7), (2:11.1)
for each plasma component. Second, as iltustrated in Figure 2.11.1, it is

assumed that the equilibrium density of each plasma component is constant out
to some radius » = R p and is zero beyond, that is,




r, = const., 0<r <Rp,

no(r) = : (2.11.2)
0, Rp <r<R,,

where R, denotes the radial location of a perfectly conducting wall. It is further
assumed that the plasma is electrically neutral and that no net axial current is
carried by the plasma components, that is,

Eﬁaea =0, (2.11.3)
and
Zn,e.B,.c=0. (2.11.4)
[+ 4
y
4
fig , Conducting
T wall

Y

na(r) y

y

o Rp Re

{ —

Fig. 2.11.1 Plot of nd(r) versus r for the constant-density profile in Eq. (2.11.2).
A grounded conducting wall is located at radiusr =R, > R,,.

It follows from Egs. (2.1.3) and (2.11.3) that the equilibrium radial electric
field is equal to zero,

E%)=0. (2.11.5)

Moreover, from Egs. (2.1.8) and (2.11.4) it follows that the equilibrium azimuth-
al self magnetic field is equal to zero,

Bs(r) =0. (2.11.6)
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Physically, if one of the plasma components is a relativistic electron beam with
axial current density —en, 8,,¢, Eq. (2.11.4) corresponds to the assumption that
the background plasma carries a net return current +e#, 3, ,c that magnetically
neutralizes the azimuthal self magnetic field produced by the relativistic electron
beam [Eq. (2.11.6)] . Finally, it is assumed that there is no equilibrium azimuth-
al motion of the plasma components,

V0,(r) =rw, () =0. (2.11.7)

Therefore the equilibrium axial diamagnetic field BS(r) is equal to zero [see
Eq. (2.1.7)],

BS(r) = 0. (2.11.8)

Note from Egs. (2.11.5)-(2.11.8) that the equilibrium radial force equation
(2.1.10) is trivially satisfied.

For the simple equilibrium configuration described by Egs. (2.11.1)-(2.11.8),
it is straightforward to extend the electrostatic stability analysis in Sections
2.7 and 2.8 to allow for relativistic axial motions of the plasma components along
the external magnetic field B, Qz. For present purposes it is adequate to quote the
resulting dispersion relation® without presenting details of the derivation.
Defining

Yo =(1— iz)-uz’ (2.11.9)

and making use of the fact that the plasma components have no equilibrium
azimuthal motion (w,, = 0), we obtain for Eq. (2.7.15) the modified form"

=2 a1 !
fo—|1-2 “paTa 1R, 2T Rp)
a (w—k,B,,c)* — QB2 P J(TR,)

-

2 -2
WpaTe eaﬂa

=02 -~ (2.11.10)
@ (w— szazc)[(w —kzﬂazc)z - Q:ﬂaz)]
where
f.=kR KQ(szc)I,'z(szp)—K,'z(szp)IQ(szc) @.11.11)
2= "z%p KQ(szc)IQ(szp)——Kg(szp)lg(szc) oo
and

TThe factors u_.);a-ya‘ that occur in Eqs. (2.11.10) and (2.11.12) are incorrectly given as

w;a'y;’ in Ref, 59 (C. D. Striffler, private communication).
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2 2 @ (w= kzﬁmzc)2
T2 =2 — © (21112)
. "-’;2;017&
& (w—k,B,,0) — Q5

In Egs. (2.11.10)-(2.11.12), @}, = 4nhizel/m,, Q, = le, 1Bo/m e, €, = sgne,,
and the “prime” notation denotes derivatives with respect to the complete
argument of the Bessel function, for example, Iﬁ(szp) = [dl(x)/dx] X=k R,

If B2, €1, then vy, ~ 1, and Eq. (2.11.10) is identical to Eq. (2.7.15) with

w, =0, as expected. If there are relative axial drifts between plasma com-
ponents, the disperston relation, Eq. (2.11.10), supports unstable solutions with
Im w > 0, at least in certamn parameter regimes. For example, if one of the
plasma components is a relativistic electron beam, the electron-electron two-
stream instability may result from the relative drift motion between the beam
electrons and the background plasma electrons.

No attempt will be made here to present a complete catalog of the two-stream
instabilities associated with Eq. (2.11.10) in the different parameter regimes of
interest. Rather, it is sufficient for present purposes to consider two limiting
cases that illustrate the influence of finite radial geometry on two-stream
instabilities resulting from relativistic beam-plasma interaction. The limiting
cases considered are (¢) the plasma-filled waveguide (R, =R,), and (b) the
thin beam limit (R, <R,).

2.11.2 Two-Stream Instability in Plasma-Filled Waveguide
In this section the dispersion relation, Eq. (2.11.10), is examined in the limit
where the plasma fills the waveguide,® that is, R, = R,. Taking the limit

R, > R, in Eq. (2.11.10)T and paralleling the analysis in Section 2.8, it is
straightforward to show that the dispersion relation reduces to

Jo(TR,) =0, (2.11.13)
where T is defined in Eq. (2.11.12). It follows from Eq. (2.11.13) that

T* R2=p},,, (2.11.14)

tNote from Eq. (2.11.11) that f, - = when R, + R ..
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where p,,,, is the mth zero of J(x) = 0. Substituting Eq. (2.11.12) into Eq.
(2.11.14) and rearranging terms gives the dispersion relation,

0=1 _H > “pala’
K o (w—k,B,,c)? —Qiy;?
_.ki __M (2.11.15)
K a (w—kB,,0) o
where k2 =2 + k1, and
p2
k2= 1’;’;’ . (2.11.16)
(4

As an example of two-stream instability resulting from relativistic beam-plasma
interaction, consider a three-component plasma that consists of beam electrons,
background plasma electrons, and background plasma ions. The following
notation is adopted throughout the remainder of Section 2.11.2:

a=b denotes beam electrons,
a=e denotes background plasma electrons,

a={ denotes background plasma ions.

Keep in mind that 71, and §,, are related by the charge neutrality condition and
the current neutrality condition assumed in Eqs. (2.11.3) and (2.11.4). The
dispersion relation, Eq. (2.11.15), simplifies in various limiting cases. For
present purposes it is instructive to examine Eq. (2.11.15) in the frequency range

lw—k,B,,¢ <Q§7;2, a=e,b, (2.11.17)

and
lw—k,B,,¢c*> Q%2 a=i. (2.11.18)

Equations (2.11.17) and (2.11.18) are statements that the electrons are strongly
magnetized and the ions are weakly magnetized in the frequency range under
investigation. It is further assumed that the magnetic field strength is sufficiently
strong and/or the electron density is sufficiently Jow that

Q§>5§a'ya,a=e, b. (2.11.19)
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Making use of Eqgs. (2.11.17)-(2.11.19), and assuming that the ion motion is
nonrelativistic (v, = I), we can express the dispersion relation, Eq. (2.11.15),
in the approximate form

-2 2 2 -3
Wpi k; WpaYa

0=l T e (o kB P
(@=kBuf K a=eb (0 —kBu0)

(2.11.20)

Depending on the parameter regime, Eq. (2.11.20) can support unstable solu-
tions with Im w > 0.

For purposes of illustration, we consider the electron-electron two-stream
instability predicted by the dispersion reldtion, Eq. (2.11.20). For high fre-
quencies well removed from resonance with the ions,

lew — k,B;,¢ |2 >5§,~, (2.11.21)
Eq. (2.11.20) can be approximated by
K WpaTa’

0=1-— — e
K e=eb (w—k,B,c)

(2.11.22)
For appropriate values of parameters, Eq. (2.11.22) has one unstable solution
with Im w > 0, which corresponds to an electron-electron two-stream instability
produced by the relative drift motion between beam electrons and background
plasma electrons. Using standard techniques, it is straightforward to show from
Eq. (2.11.22) that instability exists only for axial wave vectors k, that satisfy'*’

k§ 7 3 %, 3
s - €
kﬁ(ﬁbz -Bez)2c2 < w;b7b3 -P- 1 +<_— e R (2.11.23)

ny Ye

where k* = k2 + k2 [see Eq. (2.11.16)], a = b refers to beam electrons, and
a = e refers to background plasma electrons. Since k? =p? /R2, Eq. (2.11.23)
can be expressed in the equivalent form

p2
Lm
- 2 (Bbz _3ez)2c2‘

c

_N\1/3 3
- _ e 7b
k:(ﬁbz —Bez)z cz < w;b7b3 1+ (ﬁ_b :;;J

(2.11.24)

Since k,, is assumed to be real, a necessary condition for instability is that the
right-hand side of Eq. (2.11.24) be positive, that is,



Xt/ (PQm /Rc)z')'g(ﬁbz _B ) C
pb > 7, 173 NE
1+ ) =2
)Ib 'ye
For fixed values of i, 71, 7,,, and 7, the instability condition, Eq. (2.11.25),
cannot be satisfied if R is sufficiently small, that is, finite radial geometry
effects have a stabilizing influence on the two-stream instability. In terms of the
magnitude of the beam current, I, = |nyefy,c | 7R3, it is straightforward to

show that the instability condition, Eq. (2.11.25), can be expressed in the
equivalent form,

(2.11.25)

I, >1 ., (2.11.26)
where

pgmﬁgz'yg(l _B /ﬁtaz)z

Ly=1, o . (2.11.27)
[1 +< e) ”]
n,] Ve

In Eq. (2.11.27), the critical current I ; has been expressed in units of the
Alfven critical current 142 I, = | (i 3 /e)ﬁbz'yb |2217,000 18y, | 7, amperes
Note from Eq. (2.11.27) that the critical beam current for instability can be sub-
stantial. For example, in the case of symmetric equidensity electron components,
n, =n, and B,, = — §,,,, the instability condition, Eq. (2.11.26), reduces to

Pom 5Bz

I >I,—¢

(2.11.28)

The lowest current threshold is for = 0 and m = 1. Substituting po; == 2.4 into
Eq.(2.11.28) gives

1, >0.729v262,1, . (2.11.29)

It follows from Eq. (2.11.29) that the critical beam current for instability
exceeds the Alfvén current /, whenever | g, |2 0.76.

In general, the exact solution to Eq. (2.11.22) for the complex oscillation
frequency w = w, + iw; is not tractable. However, for the special case of
symmetric equidensity electron components with 7z, = 1, and 8, = —8,,,
closed expressions for w, and w; can be obtained. When 7, =7, and
B, = —B,, are substituted into Eq. (2.11.22), it is straightforward to show that
the solution for the unstable branch with w; = Im w > 0 s given by w, = 0 and
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— 5 2 - —2 3 12
Wpp Ty ] -1 2657

.=k +
= lhebosc] [‘ 0 + KD, 06 + kDB

) (2.11.30)

—a _3 hy /2
- l:l PR 2 -

(K + kDB

when the threshold condition in Eq. (2.11.28) is satisfied. In the limit where the
bearn radius is sufficiently large that the inequality k365,¢* < SLTJ!";Z,')'Z;3 is
satisfied, it is straightforward to show that the maximum growth rate obtained
frem Eq. (2.11.30) can be approximated by

1 —
[wi] max — 5 wpb'yb_a/z (2.11.31)

and the corresponding axial wave vector at maximum growth is

3 52 7—3
2] ax = 5 —227— (2.1132)
Bbzc

{in deriving the dispersion relation, Eq. (2.11.15), it was assumed that R, =R,.
In concluding this section, it should be noted that Eq. (2.11.15) is also approxi-
mately correct when R, # R, provided the vacuum gap between the conducting
wall and the surface of the plasma column is sufficiently small, that is,

(Rc —Rp) /R, <€ 1. A careful examination of Eq. (2.11.10) shows that Eq.
(2.11.15) is a valid approximation for the electrostatic dispersion relation as
long as '

21, , (2.11.33)

For example, for long wavelength perturbations with k2R2 < 1, f;, can be
approximated by

L __ a0
n (RJRP) ’ -
fQ =
+ 2Q
I+ R,yIR) e+£0. (2.11.34)

1-(R, /R’

—

5
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Therefore, for k2R> < 1, Eq. (2.11.33) can be expressed as

Pom (R, [R,) <1, for2=0, (2.11.35)
and
1—R, /R <—Z—  for2+#0 (2.11.36)
pIRF < E _ 11

For 2 =0 and m = 1, Eq. (2.11.35) gives the condition
Pofn(R. /R,) =24 (R, /R,)<1

for validity of Eq. (2.11.15).

2.11.3 Two-Stream Instability in Thin Beam Limit

In this section the dispersion relation, Eq. (2.11.10), is examined in the limit
where the radius of the plasma column is much smaller than the radius of the
waveguide,>®

R, <R,. (2.11.37)

It is also assumed that the axial wavelength of the perturbation is sufficiently
long that

K:R: <1, (2.11.38)
and
R;ITI2 <1, (2.11.39)
where T is defined in Eq. (2.11.12). Making use of Egs. (2.11.37) and (2.11.38),
it is straightforward to show that f,, defined in Eq. (2.11.11), can be
approximated by
1
£n (Rc/Rp) ’
fQ =
L, £+0. (2.11.40)

=0,
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Furthermore, for | T1?RJ < 1, it is valid to approximate

R N T [P
AS) - WO+ 1)
- P

in the dispersion relation, Eq. (2.11.10). When (2.11.41) is substituted into Eq.
(2.11.10), the dispersion relation can be expressed in the approximate form

@2yt
fﬂmg[—z Pa;! 2, -2
@ ((’J - kzﬁozzc) - Qm'ya

2p2 n? a3
L S n
20+1) @ (w—k,B,,c)

722 A2
“poTa

EOEQO!
E 3
(@0 = KBz €) (@ — K Byzc) — 057

=0

(2.11.42)

where f, is defined in Eq. (2.11.40).

For appropriate values of parameters, Eq. (2.11.42) supports unstable solutions
with Im w > 0. Instability can exist for both 2 = 0 and £ # 0. Note that
the right-hand side of Eq. (2.11.42), which results from an accumulation of
perturbed surface charge at r = R, makes a nonzero contribution to the dis-
persion relation when € # 0. Rather than present a comprehensive analysis of
Eq. (2.11.42),1t is sufficient for present purposes to examine only the case of
azimuthally symmetric perturbations with € = 0. The reader is referred to the
extensive stability analyses in the literature which investigate Eq. (2.11.42) for
the case ¢ # 0 (see, for example, Reference 59). Making use of Eq. (2.11.40),
we reduce the dispersion relation to

k§R2 w2 7—3
R, /RY+ —Z11-3 L =0 (21143
R, /R, 5 [ ok ( )

for 2 = 0. Defining
k= /R;) 2 (R, /R,) (2.1144)

we can express Eq. (2.11.43) as

0=1 _Zc:_z “pala’
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where k2 =k? + k3. Formally, Eq. (2.11.45) is identical in structure to Eq.
(2.11.20) with a redefinition of k% [compare Eqs. (2.11.16) and (2.11.44)].

If it is assumed that the plasma consists of beam electrons (& = b), background
plasma ions (« = i), and background plasma electrons (o = €), the analysis of the
electron-electron two-stream 1nstability proceeds in the same manner as out-
lined 1n Section 2.11.2 [see the discussion that follows Eq. (2.11.20)]. The
essential modification is that k7 = p3,, /R? is replaced by k3 = (2/R})

X (RC/RP). To illustrate two-stream instability produced by the relative drift
motion between electrons and ions, it is instructive to examine the case in which
all of the electrons are drifting with axial velocity 3,¢. When ﬁe =0 is sub-
stituted into Eq. (2.11.45), the dispersion relation for £ = 0 becomes

BT B @ o

0=1— —
k? (w— szicc)2 k? (w _kzﬁbzc)2

For appropriate values of parameters, Eq. (2.11.46) has one unstable solution
with Im « > 0. Using standard techniques,'*! it is straightforward to show from
Eq. (2.11.46) that instability exists only for axial wave vectors k, that satisfy
[see also Eq. (2.11.24)]

1/3 3
Zm v
28 —B. )22 <wi 3|1+ e} b
kz(ﬁbz ﬁ:z) 4 <wpb7b 1 m; ~
2 2 2
By —B,)°c*, (2.11.47)

R} fn (R /R )

where 71, = Zn; (Z = degree of ionization) has been assumed. Since £, is
assumed to be real, a necessary condition for instability is that the right-hand
side of Eq. (2.11.47) be positive. In terms of the magnitude of the beam current
I, =ingef,,c InRz, it is straightforward to show that the necessary condition
for instability can be expressed as

3

) 2
1 B2 151 — B / By,)
Iy > 15 =1, 5 , (2.11.48)
28 (R./R
n(R./R,) Zm, 1/3 7, 3
1+ e
m; v,

where I, = |(m,c?[e)B,,, | is the Alfvén critical current. Note from Eq.
(2.11.48) that an increase in R_/R, tends to reduce the current threshold for
instability.
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When (Zm,/m;)'"?y,[v; €1, and the beam radius is sufficiently large that the
inequality k7 (8,, —B,,)%c* € wi,v;> is satisfied, it is straightforward to show
that the maximum growth rate obtained from Eq. (2.11.46) can be approxi-
mated by

1/3
\/3— Zme T
. _ — o= -3/2
[w'] max 2 \2m, v WopTy . (2.11.49)

Furthermore, the corresponding axial wave vector and phase velocity at maxi-
mum growth are approximately

w25}
K] =22t (2.11.50)
L ]"“"‘ B,z —B;z)*

and

i

/3

1
@, 1 Zme s
[—’Z_ﬁ"zc] e 5(2m> 7, (Bp: —Bz)e. (2.11.51)

Note that the results in Eqs. (2.11.49) — (2.11.51) are independent of beam
radius for the limiting case considered here.



CHAPTER 3

VLASOV EQUILIBRIA AND STABILITY

3.1 VLASOV EQUILIBRIA FOR AXISYMMETRIC SYSTEMS

3.1.1 General Discussion

In Chapter 2, the equilibrium and stability properties of plasmas with equilibrium
electric and/or magnetic self fields were examined within the framework of the
macroscopic fluid equations. As elaborated in Section 1.3, the cold-fluid
description gives valuable insight into equilibrium and stability properties that do
not depend on the detailed momentum-space structure of the equilibrium distri-
bution function f5(x, p). In order to include the effects of finite temperature, in
this chapter the equilibrium and stability properties of collisionless plasmas with
equilibrium electric and/or magnetic self fields are examined within the framework
of the Vlasov-Maxwell equations. In this case, the one-particle distribution
function, f,(x, p, 7), and the electric and magnetic fields, E(x, ) and B(x, 1),
evolve self-consistently according to Eq. (1.3.2) and Egs. (1.3.4)(1.3.7). In
Sections 3.2-3.7 it is shown that the equilibrium and stability properties are
greatly influenced by the choice of equilibrium distribution function f2(x, p).
Moreover, there is a broad class of plasma-like waves and instabilities that depend
on the p-space structure of fo(x, p), for example, Landau damping (or growth)
resulting from resonant wave-particle interaction, and wave dispersion produced
by thermal effects (see Section 3.7). For a brief review of the fundamentals of
the Vlasov-Maxwell formalism®”~*2used throughout Chapter 3, the reader is
referred to Sections 1.3.1 and 1.3.2.

In this section, the general procedure for constructing self-consistent Vlasov
equilibria from the steady-state (8/3z = 0) Vlasov-Max well equations is discussed

90
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for two types of axisymmetric equilibrium configurations, illustrated in Figs.
3.1.1and 3.1.2.%

N
]

Plasma Column

3

Fig. 3.1.1 Axisymmetric equilibrium configuration for a plasma column of
infinite axial extent, aligned parallel to a uniform external magnetic
field B§*(x) = By€,. Cylindrical polar coordinates (r, 8, z) are
introduced with the z-axis coinciding with the axis of symmetry; 8 is
the polar angle in the x-p plane, and r =V x? +»? is the radial distance
from the z-axis.

The equilibrium configuration illustrated in Fig. 3.1.1 corresponds to a plasma
column of infinite axial extent aligned parallel to a uniform external magnetic
field, B§Xt(x) = Bo€,. Equilibrium properties are assumed to be independent of
z(d/9z = 0) and azimuthally symmetric (/86 = 0) about an axis of symmetry
parallel to By¢,. The equilibrium configuration illustrated in Fig. 3.1.1 may
represent, for example, the following plasma systems:

1. Magnetically confined, nonneutral plasma column in which the particle motions
are nonrelativistic (Section 3.2).

2. Relativistic E-layer in a neutralizing plasma background (Section 3.3).

3. Relativistic electron beam propagating through a partially neutralizing ion
background, with and without a magnetic guide field (Section 3.4).

The equilibrium configuration illustrated in Fig. 3.1.2 corresponds to a plasma
radially and axially confined in an external mirror field B§*'(x). Asin Fig. 3.1.1,
equilibrium properties are assumed to be azimuthally symmetric (3/38 = 0) about
the z-axis. The equilibrium configuration illustrated in Fig. 3.1.2 may represent,
for example, the following plasma systems:

1'Cylindrical polar coordinates (r, 9, z) are used throughout Chapter 3 (see Figs. 3.1.1 and
3.1.2). A vector V is represented as V = P’ré, + Voéo + Vzéz, where é,,, Qo and 'éz are unit
vectors in the -, 8-, and z-directions, respectively. Moreover, the gradient operator is ex-
pressed as V = e.(3/3r) + €a(1/r}(3/36) + e_(3/32).
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Mirror - Confined
Plasma

Fig. 3.1.2 Axisymmetric equilibrium configuration for a toroidal plasma radially
and axially confined in an external mirror field B§¥t(x). Cylindrical
polar coordinates (, 8, z) are introduced with the z-axis coinciding
with the axis of symmetry, and z = 0 at the mirror midplane; r is the
radial distance from the axis of symmetry, and § is the polar angle.

1. Magnetically confined nonneutral plasma in which the particle motions are
nonrelativistic.”

2. Magnetically confined, partially neutralized, relativistic electron ring (Section
3.5).

In Sections 3.1.2 and 3.1.3, the equilibrium equations are obtained for the
axisymmetric equilibrium configurations illustrated in Figs. 3.1.1 and 3.1.2,
respectively. Keep in mind that the single-particle constants of the motion in the
equilibrium fields are central to an equilibrium theory based on the Vlasov-Maxwell
equations (see Section 1.3.2). In particular, any distribution function f3(x, p)
that is a function only of the single-particle constants of the motion in the equili-
brium fields satisfies the steady-state (3/dt = 0) Vlasov equation, Eq. (1.3.8).

3.1.2 Axisymmetric Column Equilibria

In this section the equilibrium equations are obtained for the axisymmetric
equilibrium configuration illustrated in Fig. 3.1.1. In general, the plasma column
is electrically nonneutral. Therefore there is an equilibrium electric field,
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E°(x) = —V¢°(x), produced self-consistently by the deviation from charge
neutrality in equilibrium [see Eq. (1.3.11)]. Since the equilibrium is uniform in
the z-direction (3/8z = 0) and azimuthally symmetric (3/08 = 0) about the z-axis,
the equilibrium electric field can be expressed as

E°(x) = E%()e,, 3.1.1)

where r is the radial distance from the axis of symmetry, and é\, is a unit vector
in the r-direction. Since E®(x) = —V¢°(x), the radial electric field can be expressed
as

B0 == 90, (3.12)

where ¢°(r) is the electrostatic potential.

The plasma components making up the equilibrium configuration in Fig. 3.1.1
in general have mean motions in both the axial (z) and azimuthal (8) directions.
If the plasma carries an equilibrium axial current, J2(r) (e.g., due to the passage of
a relativistic electron beam), there is a corresponding azimuthal self magnetic
field. B (r), generated self-consistently. Similarly, if the plasma carries an equili-
brium azimuthal current, Jg (r) [e.g., due to the rotation of plasma components
produced by the radial electric field E?(r)], there is a corresponding axial self
magnetic field, BS (r), generated self-consistently. The total equilibrium magnetic
field, B°(x), can be expressed as

B°(x) = Boé, + By (r)es +B5 (S, (3.1.3)

where é‘z and 30 are unit vectors in the z-direction and @ -direction, respectively.
In terms of the vector potentials for the external and self magnetic fields,
B§*t(x) = Bogz'and.B{) (x)=Bj (r)é\o + B$(r)€, can be represented as

Bt (x) =V XA (x); Bj(x) =V X A$(x), (3.14)

where V= &,(3/0r) + &(1/r) (3/26), and

AR (x) = A SRS, =’—B2°-80; AB() = A5 (P8, +AS(PR,. (3.1.5)

From Eqs. (3.1.4) and (3.1.5) the components of the equilibrium self magnetic
field can be expressed in terms of A (r) and AS (r) as

Bi() == — rd3 (), (3.1.6)
B0 =—a—arA§(r). (.1.7)

Central to an equilibrium theory based on the steady-state (9/d¢ = 0) Vlasov-
Maxwell equations are the single-particle constants of the motion in the equilibrium
fields.!®” For the equilibrium field configuration given in Egs. (3.1.1) and (3.1.3),
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the single-particle constants of the motion are the total energy H, the canonical
angular momentum P, and the canonical momentum in the z-direction P,, where

H= (mic* + 2 pV? + e, 0°(, (3.1.8)
eOL e(!
B, Er[pa +7A5"‘(r)+7A§(’)], (.1.9)
e
P,=p, + -g—Ag(r). (3.1.10)

In Egs. (3.1.8)~(3.1.10), e, and m_, are the charge and rest mass, respectively, of a
particle of species a, ¢ is the speed of light in vacuo, p is the mechanical momentum,
and p? =p? +p} +p? .1 Equations (3.1.8)~(3.1.10) are relativistically correct
expressions for the single-particle constants of the motion. Moreover, the par-
ticle velocity v is related to the mechanical momentum p by

_ p/m,,
(1+ pz/mzucz)ll2 .

v (G.1.1D

In the spirit of an equilibrium theory based on the Vlasov-Maxwell equations, any
distribution function f2(x, p) that depends only on the single-particle constants of
the motion, H, Py, and P, , is a solution to the steady-state (3/9¢ = 0) Vlasov
equation, that is, equilibrium distribution functions of the form

f3x,p)=Ffo(H. Py, P,) (3.1.12)

are solutions to Eq (1.3.8). This result can be verified directly by substituting
Eq. (3.1.12) into Eq. (1.3.8) and making use of Egs. (3.1.1)-(3.1.10). Evidently
there is considerable lattitude in the specific choice of functional form for

fo(H, Py, P,). Once f3(H, Py, P,) is specified, however, the equilibrium electro-
static potential and self-field vector potential can be determined self-consistently
from the steady-state Maxwell equations, Egs. (1.3.10) and (1 3.11). Making use
of Egs. (13.10),(1.3.11), ¥and (3.1.1)-(3.1.7), it is straightforward to show that
¢°(r), A9(r), and A%(r) are determined self-consistently in terms of f °(H, Py, P;)
from

13 3

12,2 400 = —4n§eoﬁ3pfg(ﬂ,1>,,,r,), (3.1.13)

210 4
_r-;sr—rAf,(r)=—7”§eoi/c}3pvof2(H,Po,P,), (3.1.19)

b
13 3 41

2, Y% 4s(n=— 3

vl gow A3 - Eea d*pu.fo(H, Py, P,), (3.1.15)
TThroughout Chapter 3, lower case p is used to denote mechanical momentum, whereas
upper case P denotes the canonical angular momentum Py and the axial canonical momentum
P,.

*Throughout Chapter 3, it is assumed that the external charge density is equal to zero, that
iS, Pgyy (X) = 0, in the equilibrium Poisson equation, Eq. (1.3.11).




where v, = (p;/m,) (1 + p*/m}c®)™? [see Eq.(3.1.11)]. It is important to
note that Eqgs. (3.1.13)~(3.1.15) are generally nonlinear differential equations
for the equilibrium self-field potentials. This follows since H, Py, and P, depend
on ¢° (r), 45(r), and A3(r) [see Egs. (3.1.8)-(3.1.10)] .

For axisymmetric column equilibria (Fig. 3.1.1), the procedure for construct-
ing self-consistent equilibria from the steady-state Vlasov-Maxwell equations can
be summarized as follows. First, specify a functional form for fg(H, Py, P,).
Second, using this form for fg (H, Py, P,), calculate the equilibrium charge density
p°(r) and the equilibrium current densities J3(r) and J2(7), wheret

p°(r) =Ze n2(r) =Ee°:/;13pfg(H, P,,P,), (3.1.16)
[+ a
Jo(r) =§eang(r)Vga(r) =§e‘§/:13pvefg(H, P,,P), (3.1.17)
J2Ar) =Ze n (V3. (r) =Z e(:/:vazfg(H, P,,P,). (3.1.18)
[+ [«

Finally, making use of the expressions obtained for p°(r), J§(r), and J? (r), calculate
the equilibrium self-field potentials self-consistently from Eqgs. (3.1.13)-(3.1.15).
Once ¢°(r), A§(r), and A 3(r) are known, other equilibrium properties (e.g., the
particle stress tensor) can be calculated explicitly from the equilibrium distribution
function, f(H, Py, P,). |

The equilibrium analysis simplifies considerably in situations where the particle
motions are nonrelativistic™®” ™ and the axial and azimuthal self magnetic fields,
B3(r) and B (r), are negligibly small (see Section 3.2). In this case the single-
particle constants of the motion defined in Eqgs. (3.1.8)-(3.1.10) can be approxi-
mated by

2
H=m? +2P-’; +e,0°(r), (3.1.19)
[+

ea e&QQ
P, :r[p‘9 + —C~A%xt (r)] =r[p9 +myr 5 ], (3.1.20)
P, =p,, (3.1.21)

where €, = sgn e, and Q, = le, |Bo/m c. Note that A§(r) and A5(r), the
components of vector potential for the equilibrium self magnetic field, have been
neglected in Eqs. (3.1.20) and (3.1.21). Insofar as the equilibrium is electrically
nonneutral and the magnetic self fields can be neglected, the only equilibrium
equation to solve is Poisson’s equation, Eq. (3.1.13), where H, P,, P, are
approximated by Egs. (3.1.19)-(3.1.21).

tin Eqgs. (3.1.17) and (3.1.18), V()= [d’pugfe | fd3pfoand Vg, (1) =
Jd?pu,f31 [ dpfg are the azimuthal and axial velocity profiles associated with the
mean motion of component « [see Eq. (1.3.20)].




96

3.1.3 Axisymmetric Mirror-Confined Equilibria

In this section, the equilibrium equations are obtained for the axisymmetric
equilibrium configuration illustrated in Fig. 3.1.2. Asin Section 3.1.2, the equili-
brium is azimuthally symmetric (3/00 = 0) about the z-axis. However, since the
plasma is confined axially as well as radially, equilibrium properties depend on
both z and r (see Fig. 3.1.2). Therefore the equilibrium electric field, E°(x) =
~V¢°(x), produced by deviations from charge neutrality in equilibrium can be
expressed as

E°(x) = E%(r, )€, + E2 (1, 2)&,, (3.1.22)

where
E22)== 2 00, 2), (3.1.23)
E°(r,2) =——a"’; °¢, 2), . (3129)

and 3, and 32 are unit vectors in the r- and z-directions, respectively. In general,
for the equilibrium configuration illustrated in Fig. 3.1.2, there can be an equili-
brium azimuthal current, J g(r, z), associated with the mean azimuthal motions
of the plasma components (e.g., a relativistic electron ring). The self magnetic
field, B§(x), generated by the equilibrium current J§(#, z) has both radial (r)
and axial (z) components, B3(r, z) and B:(r, z). Therefore the total equilibrium
magnetic field, B®(x), can be expressed as

B°(x) = B§¥(x) + B3(, 2)8, + Bi(r, 2)€,, (3.1.25)

where B§*t(x)= BeX(r, 2)6 + Bexi(r, z)é‘z is the external mirror field. In terms o
the vector potentials for the external and self magnetic fields, B§*t(x) and B’ x)
can be represented as

BEX(x) =V X AF (x); BS(x) =V XA) (%), (3.1.26)
where V= §,(3/dr) + &,(1/rX3/30) + &,(3/0z), and
AX) =AG(r, 2)8); AS(X) =45, 2)&,. (3.1.27)

From Egs. (3.1.26) and (3.1.27), the equilibrium self magnetic field can be
expressed in terms of A§(7, z) as

19
Bs(r,z) = 7 a—rrAg,(r, 2), (3.1.28)

B, 2) = —iA 2(r, 2). (3.1.29)
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Since the equilibrium depends on z, there are only two single-particle constants
of the motion for the equilibrium field configuration given in Egs. (3.1.22) and
(3.1.25). These are the total energy H and the canonical angular momentum Py,
where

H=(me* + 2 p?)V? + e ¢°(r, 2) (3.1.30)
ea ea
P, =r|p, +7Ag’“(r,z)+—c—A§(r,z) . (3.1.31)

Equations (3.1.30) and (3.1.31) are relativistically correct expressions for the
single-particle constants. In the spirit of an equilibrium theory based on the Vlasov-
Maxwell equations, any distribution function f g(x, p) that depends only on H

and F, is a solution to the steady-state (3/0 = 0) Vlasov equation, that is,
equilibrium distribution functions of the form?*

F(x,p) =fo(H, Py) (3.1.32)

are solutions to Eq. (1.3.8). This result can be verified by substituting Eq. (3.1.32)
into Eq. (1.3.8) and making use of Egs. (3.1.22)~(3.1.31). It is straightforward
to show, by means of Egs. (1.3.10), (1.3.11), and (3.1.22)-(3.1.29), that the
equilibrium self-field potentials ¢°(r, z) and 4§ (7, z) are determined self-consistent-
ly in terms of £ 3(#, P,) from
19
r

2 40 9
wldrw °(r,z) +

az?

#¢.2)=—4n3 eoffapfg(ﬂ. Py),
(3.133)

219 . 2 s = An 3, £0
7o rA5(r, z) + Py AY(r, 2) = - Ee,_:/:i’ pvof o (H, Py),
(3.1.34)

where vy = (p,/m,) (1 + p?/m2c?)™Y/? [see Eq. (3.1.11)]. As in Section 3.1.2,
Egs. (3.1.33) and (3.1.34) are generally nonlinear differential equations for the
self-field potentials. This follows since H and P depend on ¢°(r, z) and

A% (r, z) [see Eqgs. (3.1.30) and (3.1.31)].

For an axisymmetric mirror-confined equilibrium (Fig. 3.1.2), the procedure for
constructing self-consistent equilibria from the steady-state Vlasov-Maxwell
equations can be summarized as follows. First, specify a functional form for
f(H, P,). Second, using this form for f3(H, P,), calculate the equilibrium
charge density p°(r, z) and the equilibrium current density J3(r, z), where®

Tin Eq. (3.1.36), Ve, 2) Efd’puaf&/fa”pf& is the azimuthal velocity profile
associated with the mean motion of component a [see Eq. (1.3.20)].




% p°(r,z2) =Zenl(r, z) =Z eaﬁ3pfg(H, Py), (3.1.35)
[+ 3 [+ 3
J3(r, 2) =Send(r, 2) Voo (r, 2) =% e°ﬁ3pv ofOH, Py).  (3.1.36)
[ 4 23

Finally, making use of the expressions obtained for p°(r, z) and J§(r, 2), calculate
the equilibrium self-field potentials from Eqgs. (3.1.33) and (3.1.34). As in Section
1.3.2, once ¢°(r, z) and A4 (r, z) are known, other equilibrium properties can be
calculated explicitly from the equilibrium distribution function £ (H, Py).

If the particle motions are nonrelativistic and the self magnetic field B§(x) is
negligibly small, the single-particle constants of the motion defined in Eqgs. (3.1.30)
and (3.1.31) can be approximated by™

2
H=m/c* + —2%— +e,0°(, 2), (3.1.37)
(4 4
e&
P, =r[pa +—C—A%’“(r, z)]. (3.1.38)

Note that 4§(r, z) has been neglected in comparison with 45! (7, 2) in Eq.
(3.1.38). Insofar as the equilibrium is electrically nonneutral and the self mag-
netic field can be neglected, the only equilibrium equation to solve is Poisson’s
equation, Eq. (3.1.33), where H and P, are approximated by Eqs. (3.1.37) and
(3.1.38).

3.2 NONRELATIVISTIC NONDIAMAGNETIC EQUILIBRIA
3.2.1 General Discussion

In this section self-consistent Vlasov equilibria are constructed for a nonneutral
plasma column aligned parallel to a uniform external magnetic field, B§X'(x) =
Bgye,.’" ™ Use is made of the steady-state (3/3¢ = 0) Vlasov-Maxwell description
of axisymmetric column equilibria discussed in Section 3.1.2. [t is assumed that
external boundaries are sufficiently far removed from the plasina that their
influence on the equilibrium configuration can be ignored. The equilibrium
configuration and cylindrical polar coordinate system (r, 9, z) used in the present
analysis are illustrated 1n Fig. 3.1.1. Equilibrium properties are assumed to be
independent of z (3/9z = 0) and azimuthally symmetric about an axis of
symmetry parallel to B, @z. 1t is further assumed that the particle motions are
nonrelativistic and that the axial and azimuthal self magnetic fields, B(r) and

%(r), are negligibly small. Therefore the relevant equations that describe the
equilibtium configuration are Eqs. (3.1.12),(3.1.13), and (3.1.19)-(3.1.21).

To simplify the analysis, it is assumed that the nonneutral plasma column is
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composed only of electrons, that is, no positive ions are present in the system:
>
f(x,p)=0. B2.1)

The analysis can be extended in a straightforward manner to include a partially
neutralizing ion background. Since the particle motions are nonrelativistic, and
the diamagnetic fields are assumed to be negligibly small, the equilibrium distri-
bution function for the electrons is of the form [see Egs. (3.1.12) and (3.1.19)-
(3.121)]

Te(x.p)=FIWH, Py,p,), (3.2.2)

where the electron energy H and canonical angular momentum ¥, are defined by
p2

H=2me

—ep?(r), (3.2.3)

e

Q
P, = r(po —mer—z—) . (3.24)

In Egs. (3.2.3) and (3.2.4), m, is the electron mass, —e is the electron charge,
Q, =eBy[m,c is the electron cyclotron frequency, r is the radial distance from
the axis of symmetry, ¢°(r) is the electrostatic potential, p is the mechanical
momentum, and p? =p? + p} + p? . For nonrelativistic, nondiamagnetic,
axisymmetric column equilibria, any distribution function of the form given in
Eq.(3.2.2) is a solution to the steady-state Vlasov equation for the electrons.
Once the functional form of f3(H, Py, p,) is specified, the electrostatic
potential ¢°(r) can be determined self-consistently from the equilibrium Poisson
equation, Eq. (3.1.13). Since no ions are present, Eq. (3.1.13) reduces to

190 0 o= 3, £0
r ar r ar ¢ (r) - 4”3./(; pfe(H) Pﬂ) pz)) (3-2.5)
wher?/:i"‘p FUH, Py, p,) is related to the electron density n? (r) by

no()= [&pfo(H, Py, p,). (3.2.6)

Since H depends on ¢°(r) [Eq. (3.2.3)], it follows from Eq. (3.2.6) that n2(r)
cannot be evaluated in closed form until Eq. (3.2.5) has been solved for

TWithout loss of generality, in defining the energy variable H in Eq. (3.2.3), the electron
rest mass energy (mec2 = const.) has been subtracted from the definition of / in Eq. (3.1.19).
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¢°(r). The detailed form of n2(r) of course depends on the specific choice of
f(H, Py, p,). Examples of self-consistent Vlasov equilibria in which the electron
density assumes its maximum value on the axis of rotation and off the axis of
rotation are discussed in Sections 3.2.2 and 3.2.3, respectively.

The steady-state Vlasov-Maxwell description can be used to calculate a variety
of equilibrium properties. Once ¢°(r) has been determined from Eq. (3.2.5),
closed expressions for macroscopic properties of the equilibrium can be calculated
directly from fQ(#, P, p,) by taking the appropriate momentum moments.

In addition to the electron density 122 (#) [Eq. (3.2.6)], these properties include the
mean equilibrium velocity V(x) of an_electron fluid element [see Eq. (1.3.20)],

m;l d3ppfg(H,Po,pz)
Vo(x) = ) (3.2.7)
dsp.fg(HrPeapz)

and the equilibrium stress tensor P, (x)for the electrons [see Eq. (1.3.22)],1

Pe=1 j:f’p[p—mevz(x)] [p—mVe) £2EH, By p,). (3:25)

Note from Eq. (3.2.7) that any choice of equilibrium distribution function
f 2(1-1, P,, p,) assures that the mean radial velocity is equal to zero, that is,

V2. () = 0. (3.2.9)

Equation (3.2.9) follows from Eq. (3.2.7) since H is an even function of the radial
momentum variable p,. Similarly, it can be shown from Eq. (3.2.8) that the
off-diagonal elements of the stress tensor that are proportional to fd3p . . .p, f2
are identically zero, that is,

0=[Px)],5 = [P2®)]6, = [P2x)] . = [P2X),,-  (3:2.10)

3.2.2 Rigid-Rotor Equilibria

In this section, the subclass of equilibrium distribution functions that depend
on A and P, exclusively through the linear combination, H — w, Pq, where w, =
const., is considered. In other words, the equilibrium distribution function for the
electrons is assumed to be of the form™ ="

TIn Eqgs. (3.2.7) and (3.2.8), the electron momentum p and velocity v are related by
p = m,v since the particle motions are assumed to be nonrelativistic.
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fAH, Py, p,) =1 (H— w,Py,P,), (3.2.11)

where w, = const. Making use of Egs. (3.2.3) and (3.2.4), we can express the
combination H — w, P, as

1
H—w.P, = o [pf +p? +(p, —mercoe)z]
(4

+ —n-12£ [r’(weﬂe —wl)— rznie ¢°(r)] .

It is straightforward to show, substituting Eq. (3.2.11) into Eq. (3.2.7) and making
use of Eq. (3.2.12), that

' (3.2.12)

d®ppyfol — w, Py, p,)
Ves(r) = =W, (3.2.13)

Jeorsa - open)

where r is the radial distance from the axis of symmetry. Therefore, for all
equilibrium distribution functions of the form f2(H — w,P,, p,), the mean
azimuthal motion of the electrons corresponds to a rigid rotation about the axis
of symmetry with angular velocity w, = const. These equilibria are appropriately
called rigid-rotor equilibria. Of course the equilibrium distribution function
FoH— w,P,, p,) in general incorporates a spread in electron velocities relative
to the mean.

Several general properties of rigid-rotor equilibria can be ascertained without
specifying the functional form of f2(H — w, Py, p,). For example, substituting
Eq. (3.2.11) into Eq. (3.2.8) and making use of Eq. (3.2.12), we can show from
symmetry arguments? that.

[Pe,. = P2x] . JEP [P7 + (g —mere 2 )fS(H — w, Py, p,).
. (3.2.14)

Since [PY(x)] 9= [P2(x)} 5,= O [see Eq.(3.2.10)], it follows from Eq, (3.2.14) that
the particle stress tensor is isotropic in the plane perpendicular to B, ez Therefore
it is meaningful to define an effective electron temperature perpendicular to

B, gz by the relation

[Pex)],,  [P9)]ee

G R I R (3.2.15)

Tin obtaining Eq. (3.2.14) use is made of the fact that H — w,Py is symmetric under the
interchange of p, and pg — m,rw, [see Eq. (3.2.12)}.
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Combining Egs. (3.2.6), (3.2.14), and (3.2.15) gives

(2m,)™" @b [P} + Py —m 1w, )} fUH — w Py, P,)

TS (n=
fd3pf2 (H—w,Py,p,)

(3.2.16)

As a further property of equilibrium distribution functions of the form
FAH— w,Py, p,), it can be shown from Egs. (3.2.5) and (3.2.6) that a necessary
and sufficient, condition for radial confinement [nS (r = «) = 0] of the electron gas

iS78

w
w9, —*we-——2—>0, (3.2.17)

where w},(0) = 4nng(r = 0)e* fm,. Equation (3.2.17)is simply a statement that
magnetic restoring forces must be sufficiently strong to overcome centrifugal and
electrostatic repulsive forces in order for the equilibrium to be radially confined.
Whenever the inequality in Eq. (3.2.17) is satisfied, it can be shown that

ng(r) is a nonincieasing function of r, that is, n3(r,) <n(r,) forr, >r,. For
equilibrium distribution functions of the form £ (H — w, Py, p,), the electron
density profile is bell-shaped with #2(r) assuming its maximum value on the

axis of rotation (r = 0). The inequality in Eq. (3.2.17) can be expressed in the
equivalent form

w; <w, <w,, (3.2.18)
where
. Q 202 (0y |
we = 1t [1 - —;;— : (3.2.19)
€

If w, is in the range given by Eq. (3.2.18), the equilibrium density profile is
radially confined with n2(r) decreasing to zero as 7 - eo. The region of parameter
space [w,, 2@58(0)/95] corresponding to radial confinement is indicated by the
shaded region in Fig. 3.2.1.™ Note that in the limit of Brillouin flow wa,e(O)/Qz =1
the angular velocity of rotation is w, = w: =8,/2.

Another interesting property of rigid-rotor equilibria can also be demonstrated.
Whenever w, is closely tuned to the laminar rotation velocity w; or w_ , that is,

We=wy(1=8) o w,=w;(1+8), 0<8<1, (3.2.20)

it can be shown that the equilibrium density profile has a characteristic radial
dimension R, much larger than a thermal electron Debye length, and that the
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e Parameter Regime for
Radially Confined Equilibria
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Fig.32.1 For values of w, and 2¢,.Jpe(0)/Q2 in the shaded region of parameter
space, nonneutra] rigid-rotor equilibria of the form fJ(H — w Py, p,)
are radially confined, with n(r - =) = 0 [Eq. (3.2.17)].

electron density in the column interior is approximately constant with n°(r <Rp)=
°(0) For this subclass of constant-density rigid-rotor equilibria with w,
W, orw, = w7, it is relatively straightforward to carry out a stability analym
based on the linearized Vlasov-Maxwell equations to determine the dispersive
properties of small-amplitude body waves propagating in the column interior (see
Section 3.7).
As an example of a rigid-rotor Vlasov equilibrium, consider the electron distri-
bution function specified by’

FUH—w, Py, p,) = 5, —m, V%)

21rm

2 2 (3.2.21)
y m, ng meVgJ.




1T Yiladwy adfuiuviig alug wiauviitLy
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where 7, w,, V2, and V¢, are constants, n,, is positive, and w, is in the interval
w,; <w, <w} [see Eq.(3.2.18)]. Equation (3.2.21) represents a loss-cone
distribution for the electrons. Substituting Eq. (3.2.21) into Poisson’s equation,
and assuming that there are no external boundaries, it can be shown from Eqgs.
(3.2.5) and (3.2.6) that

(mn e)?, 0<r<R,,
$°(N = (3.2.22)

— 2 1
(wnee)Rp(l + 2!2an) , r>Rp,

and

A, O0<r<R,,

no(r) = (3.2.23)

0, r> Rp,

where the column radius R, is defined by

[Vgl/wpe(o)]

. 77 (3.2.29)
P (w, — ) (W) — w,)/w}, (0)]
In Eq. (3.2.24), w; and w; are defined in Eq. (3.2.19) and w2 (0) = 4ang(r = 0)
X &*/m,=4nn,e* fm,. Note from Eq. (3.2.24) that R , is uniquely determined in
terms of properties of the equilibrium distribution function, Eq. (3.2.21). No

(3.2.5),(3.2.6), and (3.2.21). The electron density is constant and equal to
ﬁe in the column interior, and the radial boundary at r = R p that separates the
constant-density and zero-density regions is sharp (see Fig. 3.2.2). Note from Eq.
(3.2.24) that the column radius R, is large in comparison with the characteristic
thermal Debye length, A\, = V' 3, /cope(O), whenever w, = w, (1 —8) or
w,=w_(1+08)for0<s < 1.

Other properties of the equilibrium can also be calculated from the equilibrium
distribution function, Eq. (3.2.21). For example, when Eq. (3.2.21) is substituted
into Eq. (3.2.7), it is readily verified that the mean axial velocity is

Vo,(r) = V2%, = const. (3:2.25)

Furthermore, substituting Eq. (3.2.21) into Eq. (3.2.8), we can show that the
off-diagonal r-z particle stresses are identically zero [see also Eq. (3.2.10)],

TIt is assumed that ¢° (r = 0) = 0 without loss of generality.
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Fig. 3.2.2 Plot of nQ (r) versus r for the equilibrium distribution function in Eq.
(3.2.21). The electron density is constant inside the column [Eq.
(3.2.23)], and the column radius R, is defined in Eq. (3.2.24).

0=[Px)],, = [P®)],,. (3.2.26)

and that the electron motion parallel to the confining field is cold, that is,

0=[P(),,- (3227)

The transverse temperature T2, (r) defined in Eq. (3.2.16), however, is nonzero
for the equilibrium distribution function in Eq. (3.2.21). Substituting Eq. (3.2.21)
into Eq. (3.2.16) gives

m v 2
Tgl(r)=—"2-e—l (x——lg—;>, 0<r<R,, (3.2.28)
where R, is defined in Eq. (3.2.24). Asillustrated in Fig. 3.2.3, the temperature
profile is parabolic with Tgl (r) assuming its maximum value (m, V‘e’l [2)atr=20,
and its minimum value (0)atr =R o

For the equilibrium distribution function in Eq. (3.2.21), it is straightforward
to test the validity of neglecting the axial diamagnetic field BS(r) when the particle
motions are nonrelativistic and the equilibrium azimuthal electron current is
Jy () = —nd (Nerw,. The §-component of the V X B Maxwell
equation can be expressed as

(3.2.29)
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Fig. 3.2.3 Plot of T2, (r) versusr for the equilibrium distribution function in
Eq. (3.2.21). The temperature profile is parabolic [Eq. (3.2.28)],
assuming its maximum value at r = 0 and minimum value at r = R,.

Since the electron density is constant in the column interior {Eq. (3.2.23)], Eq.
(3.2.29) is readily integrated. The magnitude of the axial diamagnetic field
assumes its maximum value at r = O:

4mn e* m, (weRp)z
29, c /-

Bi(r=0)
BO

(3.2.30)

For a radially confined equilibrium, it follows from Eqgs. (3.2.18) and (3.2.19)
that w,> w; > w,,(0)/292,.T Therefore the coefficient multiplying (w R, fc)*
in Eq. (3.2.30) never exceeds unity. Since the particle motions are nonrelativistic,
(weRp[c)* < 1,and it follows from Eq. (3.2.30) that the axial diamagnetic field
is negligibly small in comparison with By,

Bs(r=0)

B, (32.31)

tFor low densities, 2w;e(0)/ﬂ; <1, note from Eq. (3.2.19) that w, = w!zx(O)IZSle.
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As a further example of a rigid-rotor equilibrium, consider the electron
distribution function specified by %677

o n, H—w,P,
fUH= 0Py )= ———exp |- 2|, (3232)
(2am_0,) e

where 71, and ©, are positive constants, and w, is in the interval w; < w, < wy

[see Eq. (3.2.18)]. The Gibbs distribution function in Eq. (3.2.32) represents

the thermal equilibrium distribution to which an isolated electron gas column

would evolve through binary collisions. (Keep in mind, however, that binary v
collisions are not included in the Vlasov-Maxwell description.) Since H is an

even function of the axial momentum variable p_, it follows from Egs. (3.2.7)

and (3.2.32) that the mean axial velocity of the electrons is equal to zero:

Ve =o. (3.2.33)

Furthermore, it follows from Eqgs. (3.2.8) and (3.2.32) that the equilibrium
stress tensor for the electrons can be expressed as

P2(x) =n2(N0,(e,¢, + &€, +&,¢,), (3.2.34)

where 3,, 39 ,and gz are unit vectors in the r-, §- and z-directions, respectively
(see Fig. 3.1.1), and n%(r) = f d*p fA(H — w,Py, p,) is the electron density.
It is evident from Eq. (3.2.34) that the equilibrium stress tensor is isotropic,
and that ©, can be identified with the electron temperature. Substituting Eq.
(3.2.32) into Eq. (3.2.6) gives

0Oy =7 e |2 Q —w?)— 2e o
ne(r) =n,exp {— 2®e r (we e we) m, " (r) »
(3.2.35)

and Poisson’s equation, Eq. (3.2.5), can be expressed as

10 8 o0 N 4 = _Me, .2y 22 o
rarr ar(b(r)—41reneexp 2®e[r (0, Q, —w) m "N ;.

e

(3.2.36)

Without loss of generality it is assumed that ¢°(r = 0) = 0. Therefore 7, can be
identified with the electron density on axis, that is, n2 (r = 0) = 71, [see Eq.
(3.2.35)] . Equations (3.2.35) and (3.2.36) cannot be soived in closed form for
n2(r) and ¢°(r). However, Eq. (3.2.36) can be integrated numerically. For
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w, /2, = 0.165 and 2w,2,e(0)/93 = (.5, the electron density profile has the
form shown in Fig. 3.2.4. Note that nd(r) is bell-shaped with the electron
density assuming its maximum value atr = 0. For the parameters chosen in

Fig. 3.2.4, the characteristic radius R, of the electron gas column is of the order
of four thermal Debye lengths, that is,

1/2
Ap = 4 i (3.237)
R _~4\, =4|——— . 2.
P D 4nTi e?
Ne
0 fe
Ng (N > T
0 1 1 1
0 2 4 6

Fig. 3.2.4 Plot of n(r) versus r/Ap for the equilibrium distribution function in
Eaq. (3.2.32). This profile is obtained by numerically integrating
Eq. (3.2.36) for w, /82, = 0.165 and 2w}.(0)/22 = 0.5, and sub-
stituting the resulting expression for ¢°(7) into Eq. (3.2.35).

It should be emphasized, however, that if w, is closely tuned to the laminar
rotation velocity, w; or w; , defined in Eq. (3.2.19), the equilibrium density
profile determined from Egs. (3.2.35) and (3.2.36) is radially very broad in
units of Ay. Although the details will not be presented here, it can be shown
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from Egs. (3.2.35) and (3.2.36) that, when w, = wi(1 —8) or w, = w; (1 +9),
for0<6 <1,

n,, 0<r<Rp,
nd(r)~ ; (3.2.38)
0, r>Rp,
where
172 -1
<) W —w)(w, —w
R,~|—— < | o 1+(" ) (2, — o) .
4nn,e w5e(0)/2

(3.2.39)

For & < 1, it follows from Eq. (3.2.39) that R, » \p =(8, /4nne?)"'?. The
electron density n(r) drops to zero rapidly for r > Rp, with a thin surface
thickness (=~ Ap).

3.2.3 Hollow Beam Equilibria with Shear in Angular Velocity

Hollow beam equilibria in which the electron density assumes its maximum
value off the axis of rotation (r = 0) have received considerable attention in the
literature, principally in connection with the diocotron instability (see Sections
2.2 and 2.10). These equilibria are characterized by a shear in the angular
velocity of mean rotation, that is, 8w, (r)/dr # 0, where

-1
Vgo(r) 3 m, dsppefg(HsPQ»p;)

w(r) = (3.2.40)

r
f d’pf2(H, Py,p,)
In this section, two examples of hollow beam equilibria with shear in angular
velocity are briefly examined. Use is made of the nonrelativistic, nondiamag-
netic Vlasov description discussed in Section 3.2.1.

As a first example of a hollow beam equilibrium, consider the electron dis-
tribution function specified by 77 19°

n

i Ro
foH, Py, p,) = 5——8(Py = Po) 8(H — Ho), (3.241)
mm,

where 1, Ry, Ho, and P, are positive constants, and Hy > Py Q,, by hypothesis.
When Eq. (3.2.41) is substituted into Eq.' (3.2.6), it is straightforward to show
that the electron density profile is
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0, 0<r<R,,
R
n () = ﬁe—rg, Ro <r<R,, (3.2.42)
0, r>R,,

where R, and Rp are the extremes of the interval on which the inequality,
0 me rQe Po :
Hy +e¢®(r) Y T+ mr =0, (3.2.43)

is satisfied. On the assumption that there are no external boundaries, the
equilibrium electrostatic potential ¢°(r) for this example can be expressed as

0, 0<r<R,,

L

47TeﬁeR0 (r_Ro _RQ n
Ry

), RQ < r<Rp,
() =

R,
4men,Ro <Rp —Re —Rofn R
°

—(R, —Ro) k%) r>R,. (3.2.44)
D

Note from Eq. (3.2.42) that the electron density falls off as 1/ in the range
Ry <r <Rp. and that the radial boundaries of the column (at r = R, and
r= Rp) are sharp (see Fig. 3.2.5). Equations (3.2.43) and (3.2.44) can be
combined to determine R, and Rp . For example, since ¢°(R,) = 0, Eq.
(3.2.43) gives (for Hy > Q,Py > 0)

12

Ry = (L) [H(‘,’Z —H, —szepo)"z] . (3.2.45)

2
me‘Qe

A closed expression for R, is not accessible analytically.”r However, once the
values of Hy, Py, 2, etc., are specified, R p can be determined numerically from
Egs. (3.2.43) and (3.2.44).

Tif the equilibrium layer of electrons is thin with A =R, R, < R,, it is straightforward
to obtain an approximate expression for R, =R, + A from Egs. (3.2.43) and (3.2.44).
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Fig.3.2.5 Plot of n2(r) versus 7 for the equilibrium distribution function in
Eq. (3.2.41). The electron density profile is hollow [Eq. (3.2.42)]
with inner radius Ry and outer radius R, determined from the
extremes of the interval on which the inequality in Eq. (3.2.43)
is satisfied.

Other properties of the equilibrium can also be calculated from the equilibrium
distribution function, Eq. (3.2.41). For example, when Eq. (3.2.41) is sub-
stituted into Eq. (3.2.7), it is readily verified that the mean axial velocity is
equal to zero, V2,(r) = 0, and that the angular velocity of mean rotation is
given by

V2 _ Q, N Py

2
r 2 mr?

w (= Ro <r<R,. (3.2.46)

Note from Eq. (3.2.46) that the mean azimuthal motion of the equilibrium does
not correspond to a rigid rotation about the axis of symmetry, that is,

0w, (r)/or # 0. Furthermore, when Eq. (3.2.41) is substituted into Eq. (3.2.8),
it can be shown that the equilibrium stress tensor is given by

m, [r& P,
Po(x)=n2(r) | Ho +ed°(r) —f (—f+ = ) (6,8, + &,8,),
(3.2.47)

where n2(r) and ¢°(r) are defined in Eqs. (3.2.42) and (3.2.44), and €, and ¢,
are unit vectors in the 7- and z-directions, respectively (see Fig. 3.1.1).
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The quantity in square brackets in Eq. (3.2.47) is equal to zero at r = Ry and
r= Rp [see Eq. (3.2.43)]. Therefore the particle stress tensor for the electrons
vanishes identically at the inner and outer surfaces of the column. Note from
Eq. (3.2.47) that the effective axial and radial temperatures for Ry <r <R,
can be expressed as

m,r

m, (r2, P 2
To(r)=To(r)=Ho +e$°() ——— |5+ . (3.248)

As an example of a hollow beam equilibrium with diffuse radial boundaries,
consider the electron distribution function specified by

AP} H—w,P,
FOH, Py, p,) = p[— £

T < am ex - ¥ i
(2mm, ©,)%? ©, ] (3:2.49)

where 4, w,, and ©, are positive constants. When Eq. (3.2.49) is substituted
into Eq. (3.2.6), it is straightforward to show that the electron density profile is

Q

e

2
0 2.2 e_e 2§ £
ne@) = Am®| —=+r* | @, — 5
e

e |5 23,2 _ 2€ 40
Xexp — (@ 2, —wp)rt ——=¢°()]} , (3.2.50)
(4
where ¢°(r) is determined self-consistently from Poisson’s equation,

2
13,2 00y amedmtyr | 2242 (o 2
i ar(b(r)—41reAmer me+r .

X exp g— e [(5 Q, —wHrt — 2gi)"(r):l i . (3.2.51)
2@e e e e me o
Equations (3.2.50) and (3.2.51) cannot be solved in closed form for n2(r) and
¢°(r). However, for an appropriate range of &, it can be shown that the
equilibrium is radially confined. The electron density n2(r) begins at zero when
¥ = 0, increases monotonically to some maximum value Hopg atr=ry,, and
subsequently decreases monotonically to zero as » = oo, Furthermore, when
Eq. (3.2.49) is substituted into Eq. (3.2.7), it can be shown that the mean axial
velocity is equal to zero, ¥ 2,(r) = 0, and that the angular velocity of mean
rotation is given by
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[
20, Ge —-Q./2
Vo, m m @
e — e e
w, ()= S =W, 1+ 5 o\? - (3.2.52)
__‘f_+r2 o ——
m, ( € 2)

Note from Eq. (3.2.52) that the mean azimuthal motion of the equilibrium does
not correspond to a rigid rotation about the axis of symmetry, unless
w, =8,/2.

3.3 RELATIVISTIC E-LAYER EQUILIBRIA

3.3.1 General Discussion

Solutions to the steady-state (3/9¢ = 0) Vlasov-Maxwell equations that
correspond to relativistic E-layers''? =!'% (cylindrical layers of electrons) are of
considerable practical interest for Astron-like configurations.5%51:129:121 [y this
section examples of self-consistent Vlasov equilibria are considered for an E-
layer aligned parallel to a uniform external magnetic field, B§*(x) = Bo'e\z.

Use is made of the steady-state Vlasov-Maxwell description of axisymmetric
column equilibria discussed in Section 3.1.2. The equilibrium configuration and

Fig.3.3.1 Axisymmetric E-layer aligned parallel to a uniform external magnetic
field, B§*!(x) = B, ¢,. Cylindrical polar coordinates (r, 8, z) are
introduced with the z-axis coinciding with the axis of symmetry; 8
is the polar angle in the x-y plane, and r =Vx? + y? is the radial
distance from the z-axis.
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eylindrical polar coordinate system (r, 8, z) used in the present analysis are
illustrated in Fig. 3.3.1. Equlibrium properties are assumed to be independent
of z (3/8z = 0) and azimuthally symmetric (8/96 = 0) about an axis of sym-
metry parallel to By€,. The mean azimuthal motion of the electrons composing
the E-layer is assumed to be relativistic, and the axial self magnetic field BS(r)

is included in the equilibrium analysis.T The relevant equations that describe
the equilibrium configuration are Eqgs. (3.1.8)-(3.1.15).

To simplify the theoretical analysis the following assumptions are made:

1. The Elayer is immersed in a neutralizing plasma background that provides local
charge neutrality, p°(r) = 0. Therefore, from Egs. (3.1.13) and (3.1.16),
the equilibrium radial electric field is equal to zero, E 2(r) = —3¢° (r)/dr = 0,
and

¢°@® =0 (3.3.1)

without loss of generality. It is further assumed that the current carried
by the background plasma is equal to zero. Therefore the self magnetic
field is generated entirely by the E-layer.

2. External boundaries are sufficiently far removed from the E-layer that their
influence on the equilibrium configuration can be ignored.

3. The equilibrium distribution function for the electrons composing the E-
layer does not depend on the axial canonical momentum P, defined in Eq.
(3.1.10). In other words, the present analysis is restricted to the class of
equilibrium distriubtion functions of the form

fg(x! P) =f2(H’ Po)’ (3.3.2)

where H and P, are the single-particle constants of the motion defined in
Eqgs. (3.1.8) and (3.1.9). For equilibrium distribution functions of the form
FYUH, P,), there is no axial motion of the electron beam, and the azimuthal
self magnetic field is equal to zero.

As discussed in Section 3.1.2, any distribution function that is a function only
of the single-particle constants of the motion in the equilibrium fields satisfies
the steady-state Vlasov equation. For axisymmetric column equilibria, the total
energy f1 and canonical angular momentum Py of an electron can be expressed
as [see Egs. (3.1.8), (3.1.9). and (3.3.1)]

TThe equilibrium examples considered in Section 3.2.3 also correspond to E-layers. How-
ever, the particle motions were assumed to be nonrelativistic, and the axial self magnetic
field was neglected in the analysis.
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H=(m2c* +c2p?)V?, (33.3)
_ ‘Qe e s
Py =r pe—mer—z--c-Ao(r) , (3.3.4)

where Q, = eB, [m ¢, m, is the electron mass, —e is the electron charge, r is the
radial distance from the axis of symmetry, A3(r) is the 0-component of the
equilibrium vector potential for the axial self magnetic field B (r) [see Eq.
(3.1.6)], p is the mechanical momentum, and p? = p2 + p; + p2. In reducing
Eq. (3.1.9) to the form given in Eq. (3.3 .4), use has been made of A5*'(r)
= "Bo /2

The simplification provided by assumption 3 can be demonstrated as
follows. Note from Eq. (3.3.3) that H is an even function of p,. Therefore
fO(H, P,) is also an even function of p,, and the mean axial velocity of
the E-layer is equal to zero, that is,

/213 _F(H, P
Vo (r)= pu.fethFo)_ , (33.5)

where v, = (p,/m,) (1 + p?/m2c®)™2." Since the background plasma current
is zero (assumption 1), it follows from Egs. (3.1.7), (3.1.15), and (3.3.5) that
no azimuthal self magnetic field is produced by the relativistic E-layer, that is,

B3(r) =0, (3.3.6)

for the class of equilibrium distribution functions of the form f g(H, Py).

Once the functional form of fO(H, P,) is specified, the self-field vector
potential AZ (r) can be determined self-consistently from the §-component of
the V X B§, Maxwell equation, Eq. (3.1.14). Since the background plasma
current is zero (assumption 1), Eq. (3.1.14) reduces to

4
o 7 3740 == /:13,) Vol S(H, Py) , (33.7)

where v, =(p,/m,)(1 + p*/m2c?)™2. In Eq.(3.3.7),—e [ d®p vof 2(H, Py)
is related to the azimutha! electron current JJ(r) by

TSimila:ly, SL(H, Pg) is an even function of p,, and the mean radial velocity is equal to
zero

Ve () =/ d*pu,fO #H, PIfdp fO(H, Pg) =0.
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Iy =—end (W 25 (N = —e‘/:i“’p v fe(H, Py), (3.3.8)
where V2, (r) is the mean azimuthal velocity of an electron fluid element,
./‘dapvaf 2 (H, Py)
V() = , (33.9)
_/:ispf S (HP,)
and n2(r) is the electron density,
o= [ 73, £0
no(r)=[ d’p f (H, Py) . (3.3.10)

Since P, depends on A5(r), Eq. (3.3.7) is generally a nonlinear differential
equation for the self- fleld vector potential. Once the functional form of

f 2(11’, Py) is specified, however, A§ (r) can, in principle, be determined from Eq.
(3.3.7), and then the axial self magnetic field obtained from

AS
BS() = —a—Ag( 7+ “( )

(3.3.11)

3.3.2 E-Layer Equilibrium with Sharp Radial Boundaries

There is considerable latitude in the choice of equilibrium distribution function
f 2(}1, Py). Asan example that corresponds to a relativistic E-layer with sharp
radial boundaries and also permits an exact analytic determination of the axial
self magnetic field BZ(r), consider the equilibrium distribution function specified
by!14

AR
fUH, P =5 2yam, 8(P, —Po) 8(H —yom,c?), (33.12)

* where H and P, are defined in Eqgs. (3.3.3) and (3.3.4), P, = const., and 7,, R,,
and 7, are positive constants. For the equilibrium distribution function defined
in Eq. (3.3.12), all of the electrons composing the E-layer have the same value
of canonical angular momentum (P, = P,) and the same value of energy

(H = vom,c?). Except for the definitions of H and Py, Eq. (3.3.12) is similar
in form to the equilibrium distribution function, Eq. (3.2.41), analyzed in
Section 3.2. When Eq. (3.3.12) is substituted into Eq. (3.3.10), it is straight-
forward to show that the electron density profile for the E-layer is!!4
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0, 0<r<R,,
R,
nl(r) = ﬁe—r—, Ro <r<R,, (3.3.13)
0 r>Rp R

where Ry and R, are the extremes of the interval on which the inequality,

2
2.4 4 .2 Po 2, e s . 2
mec” + % | ==+ mgr —2—+ZA9(r) — YoMt <0, (33.14)
is satisfied. Note from Eq. (3.3.13) that the density profile has sharp radial
boundaries (at R, and R, and is similar in form to the density profile illustrated
in Fig. 3.2.5. When Eq. (3.3.12) is substituted into Eq. (3.3.8), the azimuthal
current density can be expressed asl.l“

0, 0<r<R,,
° n € Ro Po Q
Jo(n)= —%m pl i —+m r—+—A 5N |, Ro <r<R,, (3.3.15)
0, r>R,,
and Eq. (3.3.7) reduces to
0, 0<r <Ro,
319 . 4mrie Ro|Po Q,
—_——— - —_ _+_. s
Pl arrAe(r) Yome 7 |7 +m,r > A5()] . Ro <r<Rgk,,
0, r>R,
(3.3.16)

From Eqs. (3.3.8), (3.3.13), and (3.3.15), the azimuthal velocity profile for
electrons composing the E-layer is

Veo(r) =

Py Q,
[ " +m r7+—Aa(r)] (3.3.17)

'Y()me
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forRo <r<R,.

Note from Eq. (3.3.14) that Ry and R, cannot be evaluated explicitly until
${r) has been determined from Eq. (3.3.16). Furthermore, the solution for
A3 (r) depends on R, and R,,. Therefore the condition that determines R, and
R, is, in effect, nonlinear. Keeping in mind that the self magnetic field is zero

outside the E-layer (r > R, ), we can express the solution to Eq. (3.3.16) as

B % 0<r<R,,
cP, 7B,
$() ={ a2 [(r [8)V?] +bK, [(r[8)?) ==, Ro<r<R,,
g, r>R,,
(33.18)

where B, a, b, and d are constants, I, and X, are modified Bessel functions of
order », and 8 is defined by

o
§=-——, (3.3.19)
4wpeRo

where @}, = 47 e* /m,. From Eqgs.(3.3.11) and (3.3.18), the axial self
magnetic field BS(r) is

B, 0<r<Ro,
1
Bi(n= L aly[(r/8)'?] —bK.[(r/8)"*1{ —Bo, Ro<r<R,,
0, r>Rp.

(3.3.20)

The continuity of A§ () and Bj(r) atr = Ro andr = R, provides the four
boundary conditions that determine the constants B}, a, b, and d, in terms of
8,Pg, Bo, Ro, and R,,. From Eqgs. (3.3.18) and (3.3.20), the continuity of
A5 (r) and BS(r) at r = R, gives

CPO RoBo

Ro
Bf —=al, [(Ro/8)"*] + Ky [(Ro/8)'/? “eR, 2

(3.3.21)
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Bi= ——= ~By.
P aAR,8)? ’

g‘dl[(Ro/a)UZ]“bKl[(Ro/5)1l2]

(3.3.22)
Moreover, from Eq. (3.3.20), the continuity of B;(r) atr = R, gives

1

—_— ' 1/2y_ 1/2
T ol [(R,/6)" ] - bK, [(R,18)V?]

—B, =0. (33.23)

The continuity of 4§ (r) atr = R,, serves only to evaluate the constantd and is
not required to determine the self magnetic field B{(r) [see Eq. (3.3.20)]. From
Egs. (3.3.21)-(3.3.23), the constants B, 4, and b are

s a ,CPo/eRo
Bj=—Bo—4A 172 172
HRoD) (R B)

—11[R, [ 8)*1K, [(Ro/8)"?] %

211 [(Ro/8)!/?] K, [(R,,/8)"?]

By

TR 3" [(Ro/8)"'] K, [(Ro/8)!/?]

+1I, [(R0/8)l/2]K,[(RO/S)”’]Z ) ) (3.3.24)

_ CPo/eRo
o= (g
4

+ B,

W K1 [(Ro/8)/2] + K [(Ro/8)"?] % ) . (33.25)

and

cPo/eR
b (Z(Ro :)"02 AR,/

+B, ;;(R—)— 1 [Ro /8] 15 [(Ro[6)'"?) E) (3.326)

where
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R,

8(R06)l/2(Rp8)l/2

— 1 [(R,/8)'7?] Ky [(Ro/8)'] z

A

KR, /8171 I [(Ro/8)"?]

1
Z(Rp5)1/2

+1, [(Rp/a)lh] K, [(Rof8)"/?) } . (3.3.27)

3& [(R,/6)/?] I [(Ro/8)'?]

When Eqs. (3.3.24)-(3.3.27) are used, Eq. (3.3.20) constitutes a closed expres-
sion for the axial self magnetic field B} (r) in terms of 8, Po, Bo, Ro, and R,.

The values of R, and Rp are determined from the extremes of the interval on
which the inequality in Eq. (3.3.14) is satisfied. For example, substituting Eq.
(3.3.18) into Eq. (3.3.14) and making use of Eq. (3.3.21), we determine the
inner radius Ry from

Po eRo 2 V2

E + 7(80 +Bf) =#v5 —1) my , (3.3.28)
where Bj is defined in Eq. (3.3.24), and the upper (lower) sign in Eq. (3.3.28)
holds if V2, (Ro) is positive (negative) [see Eq. (3.3.17)] . Similarly, substituting
Eq. (3.3.18) into Eq. (3.3.14), we determine the outer radius R, from

£ 1aly R, 187 ] + 0K, [(R,18)?] =28 — ) /*mec,  (33.29)

where a and b are defined in Egs. (3.3.25) and (3.3.26). Since B}, @ and b are
transcendental functions of Ry and R, the inner and outer radii must be evalu-
ated numerically from Egs. (3.3.28) and (3.3.29). In principle, however, Eqs.
(3.3.28) and (3.3.29) determine R, and R, in terms of B, and the parameters
that characterize the equilibrium distribution function defined in Eq. (3.3.12)
(e.g-.7,, Py and yom,c?).

As an example, consider the choice of equilibrium parameters related by

2
Po= 203 — 1 (33.30)
[¢] 2 1] wpe 3 e gt
4
M — 0" =20./0,, (3.331)

where w2 = dnni e? /m, and Q, = eBo/m,c. Using the upper sign in Eq.




(3.3.28), it can be shown from Eqs. (3.3.24)-(3.3.29) that Bf = —1.338B,,
Ro = 26/, and Ry, = 3.65¢/Wpe.

The total axial magnetic field, B, + B3(r), is plotted as a function of r in Fig.
3.3.2.1% Note from this figure that there is 33% field reversal inside the

i
2
|
f&,pelc*‘—

Fig. 3.3.2 Plot of total axial magnetic field, By + B3 (r), versus rape/c for the
equilibrium distribution fucntion in Eq. (3.3.12) and choice of
parameters in Egs. (3.3.30) and (3.3.31). The axial diamagnetic
field B3(r) is defined in Eq. (3.3.20). There is 33% field reversal
inside the E-layer (0 <r <Ry).

Elayer (0 <r <R,) for' the choice of parameters in Egs. (3.3.30) and (3.3.31).
Furthermore, the mean azimuthal velocity of the electrons, V 2,(r), is in the
positive 8-direction,’ which is in the same sense in which the electrons would
gyrate freely in the uniform external magnetic field Bogz, for B, > 0.

3.3.3 E-Layer and Theta-Pinch Equilibrium with Diffuse Radial Boundaries

It should be emphasized that Eq. (3.3.12) is only one of a broad class of
electron distribution functions f9(H, Py)that physically correspond to relati-
vistic E-layer equilibria. As an example of an E-layer or linear theta-pinch
equilibrium that has diffuse radial boundaries and also permits an exact analytic
determination of the axial self magnetic field Bj(r), consider the equilibrium
distribution function specified by !4

tFor example, V2e(R,) = +(v2 — 1) ?¢/v, follows from Eqs. (3.3.17) and (3.3.28) for
the choice of parameters in Eqs. (3.3.30) and (3.3.31).

4
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feH, Py)=

H
(2nm ‘@ Y2 e P [—(H? Ime® —mc® — 2w,Py)28,]
e ¢ (33.32)

where H and P, are defined in Egs. (3.3.3) and (3.3.4), w, = const., and 7,
and ©, are positive constants. In terms of the phase-space variables (r, p),
Eq. (3-3.32) can be expressed in the equivalent form

n
0 € 2 /.2 2312
r.p)= 1+p%imic?)
fer.p) 2mm, 0,7 (1 +p*/m,
p: +(p, —mprw,)? +p?
Xexp |— o,

m
X exp g— 2@e [rzweﬂe —r*w?l + 2w, erdf(r) / mec] ; , (3.333)
e

where use has been made of Eqs. (3.3.3) and (3.3.4). The reason for the some-
what unusual choice of equilibrium distribution function in Eq. (3.3.32) is
evident. The inclusion of the multiplicative factor H/m,c? = (1 + p?/m2c?)"/?
in the definition of f2(H, P,) permits the integial f d>p (pg/m,)

X (1 +p*/m2c®) V2 f 2 (H, P,) to be evaluated in closed form. When Eq.
(3.3:32) [or Eq. (3.3.33)] is substituted into Eq. (3.3.8), the azimuthal current

density can be expressed as

m
J3(r) = —n ew,r exp {-— 2(_3: [rzweﬂe —rtw? + 2w, erdj(r) | mec]} ,
(3.334)
and Eq. (3.3.7) reduces to
R N NP _me[z g
> 7 arrAﬂ(r)— - exp{ 20, rw,Q, —rw;
+ 2w erdy(r) /mec] } . (3.3.35)

Equation (3.3.35) was first solved by Pfirsch.!*® Without loss of generality, the
solution to Eq. (3.3.35) that can result in field reversal is

TNote that the expression for Jg(r) given in Eq. (3.3.34) remains unchanged if the non-
relativistic approximation (p* < mc?) is made in Egs. (3.3.33) and (3.3.8).




e/ ANVARLATAU LAY A AN Wi Assfesianasee %g :

r’B, c® mrtw? r? —ré
rdi(n=-— 2 p—= [—l- £t +22ncosh< - ,

2 ew, {2 O, 282
(3.3.36)
where rq is a constant, T
220, m, 1a
o=\ > (33.37)
Wi,

and w3, = 4nii,e? /m,. When Eq. (3.3.36) is substituted into Egs. (3.3.11),
(3.3.32), and (3.3.34), it is straightforward to show that!!

O, | m w? r2 —2
[——e——‘f—+ 2 (anh 0 ] , (3.338)
W, o, 82 252

Bi(r)=—Bo +—

p; +(pg —mgrew,)’ +p}
X expg .0, . (33.39)
and
r:—rid
J5(r) = —n,erw, sech? e (3.3.40)
0

Note from Eqs. (3.3.39) and (3.3.40) that the E-layer has diffuse radial
boundaries. Furthermore, from Eq. (3.3.40), the magnitude of the azimuthal
current density is a maximum at r = rq, and the radial thickness of the current

TThe constantr, can be related to &, ;ie, ©,, and the electron density on axis. Substitut-

ing Eq. (3.3.39) into Eq. (3.3.10) gives

r? nl@r=0)
sech? ( 2 )= i ,:( ! fd&p (1 + p* /mict)

a2
n, 2mm,8,)

-1
p; +p§+p;
X exp ———2—”;;—GT‘ .
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layer is of the order 8, [see Eq.(3.3.37)] . Making use of Eq. (3.3.38), we can
express the condition that the axial self magnetic field vanishes outside the
E-layer [Bj(r>r,) = 0] as

eB 20,./m
> —w, <1 +—"—/—"), (3.3.41)

252
m,c (‘Je60

which relates By, w,, ©,, and 8,. For By >0, 1t follows from Eq. (3.3.41) that
w, >0 is required for existence of the equilibrium. This implies that the mean
azimuthal velocity of the electrons, V 0,(r), 1s 1n the positive 8-direction [com-
pare Egs. (3.3.8) and Eq. (3.3.40)], which is in the same sense in which the
electrons would gyrate freely in the uniform external field Bo'éz, for By >0.
For w, >0, Eq. (3.3.41) can be expressed in the equivalent form

eBo N 2e,/m)"*w,,

e ™ e - , (3.3.42)

where use has been made of Eq. (3.3.37). When Eq. (3.3.42) is substituted into
Eq. (3.3.38), the axial self magnetic field can be expressed ast

m,w,,(20,/m,)"? rt —ri
Bi(r)=— € pe(e e/ e) [l —tanh("“;g;o")] s (3.3‘43)
0

and the self magnetic field on axis reduces to

- 2@ 172 2
BS(r=0)=— m,w,.(20,/m,) [1 + tanh <—7r§32—>] , (33.44)

e <“o

If w, is close to zero (0 < w, < eBy/m,c), it follows from Egs. (3.3.42) and
(3.3.44) that

BS(r=0)~—B, [1+tanh ( i )] . (3.3.45)
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If rd > 253 is also satisfied, BS(0) ~ —2B,, and field reversal is almost complete.
As an example, consider the choice of equilibrium parameters related by

TNote that the coefficient in Eq. (3.3.43) can also be expressed as

meape(2®e/me)""' [e = (8nn 0, )2




w, =0.05eBy | mc (3.3.46)

and
. 12=108%. (3.3.47)
|
Substituting Eqs. (3.3.46) and (3.3.47) into Egs. (3.3.42) and (3.3.44) gives
(26, /me)‘ha—)pe [¢=095eB, [me, and Bi(r=0)=—1.9B,.

Furthermore, 83 = 19 ¢? /e, follows from Eq. (3.3.37).

The total axial magnetic field, By + Bj(r), is plotted as a function of 7 in
Fig. 3.3.3."'* Note that there is 90% field reversal for the choice of parameters
in Eqgs. (3.3.46) and (3.3.47).

io
(o]
0.6
1 04

By + B, (r)

-02+

r/8g — o/84 /10

s
—06kL B, + B3N

B
-08}| °

—|0F

Fig. 3.33 Plot of total axial magnetic field, By + B(r), versus#/8¢ for the
equilibrium distribution function in Eq. (3.3.32) and choice of
parameters in Egs. (3.3.46) and (3.3.47). The axial diamagnetic
field Bi(r) 1s defined in Eq. (3.3.43). There is 90% field reversal
on axis (r = 0).

3.4 RELATIVISTIC ELECTRON BEAM EQUILIBRIA
3.4.1 General Discussion

Solutions to the steady-state (9/3¢ = 0) Vlasov-Maxwell equations that corre-
spond to intense relativistic electron beam equilibria!?2 —127 gre of considerable
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practical interest.’2~%3 In this section an example of a self-consistent Vlasov
equilibrium is considered for a relativistic electron beam propagating parallel

to a uniform external magnetic field, B§*!(x) = Bo€,. Use is made of the steady-
state Vlasov-Maxwell description of axisymmetric column equilibria discussed

in Section 3.1.2. The equilibrium configuration and cylindrical polar coordinate
system (7, 0, z) used in the present analysis are illustrated in Fig. 3.4.1.

Fig. 3.4.1 Axisymmetric electron beam propagating parallel to a uniform
external magnetic field, B§X!(x) = B, €,. Cylindrical polar co-
ordinates (r, 0, z) are introduced with the z-axis coinciding with the
axis of symmetry; @ is the polar angle in the x-y plane, and
r= +/x2 + y? is the radial distance from the z-axis.

Equilibrium properties are assumed to be independent of z (8/3z = 0) and
azimuthally symmetric (8/36 = Q) about an axis of symmetry parallel to

By 'éz. The mean axial motion of the electron beam is assumed to be
relativistic, and the azimuthal self magnetic field Bj(r) is retained in the equili-
brium analysis. The relevant equations that describe the equilibrium configura-
tion are Egs. (3.1.8)-(3.1.15).

To simplify the theoretical analysis the following assumptions are made:
1. The electron beam is immersed in a partially neutralizing ion background

with density T

no) = (), (4.1)

Tin many applications of interest the assumption n;-’(r) = fi}(r) may be highly idealized. In
this regard the equilibrium analysis in Section 3.4 can be extended in a straightforward
manner to describe the ion background self-consistently by means of an equilibrium distri-
bution functionf;-’(x, p) (see the discussion at the end of Section 3.4).
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where f = const. = fractional neutralization. It is further assumed that the
mean ion velocity is equal to zero in the laboratory frame.

2. External boundaries are sufficiently far removed from the electron beam that
their influence on the equilibrium configuration can be ignored.

3. The equilibrium distribution function for the beam electrons does not depend
explicitly on the canonical angular momentum P, defined in Eq. (3.1.9). In
other words, the present analysis is restricted to the class of equilibrium dis-
tribution functions of the form

f2x,p) =f(H, P,), (34.2)

where 1 and P, are the single-particle constants of the motion defined in Eqgs.
(3.1.8) and (3.1.10). For equilibrium distributions of the form f2(H, P,),
there is no azimuthal rotation of the electron beam, and the axial self
magnetic field is equal to zero.

As discussed in Section 3.1.2, any distribution function that is a function only
of the single-particle constants of the motion in the equilibrium fields satisfies
the steady-state Vlasov equation. For axisymmetric column equilibria, the total
energy A and axial canonical momentum P, of an electron can be expressed as

H=(m}c* +c*p*)" > —ep (),  (343)

P, =p, ——Z—A‘;(r), (3.4.4)
where m, is the electron mass, —e is the electron charge, 7 is the radial distance
from the axis of symmetry, A5(r} is the axial component of the equilibrium
vector potential for the azimuthal self magnetic field By (r) [see Eq. (3.1.7)],
¢°(r) is the equilibrium electrostatic potential, p is the mechanical momentum,
and p> = p} +p; +p2.

The simplifications provided by assumption 3 can be demonstrated as follows.
First, note from Eq. (3.4.3) that H is an even function of p,. Therefore,
f 2 (H P,)is also an even function of p,, and the mean azimuthat velocity
Vge (r) of the electron beam is equal to zero, that is,

Jervv 0w py
Japriw.2)

Vo= 0, (3.4.5)

where v, = (py/m,) (1 + p?/m2c?)~V2%_ Since the background ion current is

TSimilarly, I g (41, P;) is an even function of p,, and the mean radial velocity is equal to zero,

V0 = [dpu foWH, P,) | [ dp o, P,) = 0.
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zero (assumption 1), it follows from Egs. (3.1.6), (3.1.14), and (3.4.5) that no
axial self magnetic field is produced by the relativistic electron beam, that is,

Bl (r) =0, (3.4.6)

for the class of equilibrium distribution functions of the form f2(#, P,). Fur-
thermore, from Eqs. (3.4.3) and (3.4.4), the equilibrium properties of the elec-
tron beam do not depend on the externally applied magnetic field Bo€, for
electron distiibution functions of the form f 2 (H, P,).

Once the functional form of f2(H, P, ) is specified, the self-field potentials,
¢°(r) and A2(r), can be determined from the appropriate Maxwell equations,
Eqgs. (3.1.13) and (3.1.15). Making use of Eq. (3.4.1), we reduce Eq. (3.1.13)
to (single ionization is assumed) .

13, 2 pey=anei—n) fepr2@p), B4

where [ d®p f2(H, P,) is related to the electron density n(r) by

n@)=| &’pfH, P,). (34.8)
Furthermore, since the background ion current is zero (assumpnon 1), Eg.
(3.1.15) reduces to

T a0 =" [epu, r208,), (3.49)

where v, = (p,/m,) (1 + p*/m3c?)™'/%, InEq. (3.4.9), —e [ d*pu,f2(H,P,) is
related to the axial electron current J2(r) by

@) =—en2()V2 () = —e‘/‘d3p v, fOH,P,), (3.4.10)
where V2 (r) is the mean axial velocity of an electron fluid element,

J @pv s, p,)
Je@rrie )

Since H and P, depend on ¢°(r) and 4$(r), Egs. (3.4.7) and (3.4.9) are generally
nonlinear dlfferentla] equations for the self-field potentlals Once the functional
form of fO(H, P,) is specified, however, ¢°(r) and A3(r) can, in principle, be
determined from Egs. (3.4.7) and (3.4.9), and then the self fields obtained from
EX(r) = —3¢°(r)/ar and B (r) = —aA43(r)/or.

Ve = (3.4.11)
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As an example of a relativistic electron beam equilibrium,'?* consider the
electron distribution function specified by

3.4.2 Example of a Relativistic Electron Beam Equilibrium

ne
2myom,

feH, P)= 8(P, — Yom,Boc) S(H —vom,c*), (3.4.12)

where H and P, are defined in Egs. (3.4.3) and (3.4.4), 8, = const., and 7, and
¥ are positive constants. For the equilibrium distribution function defined in
Eq. (3.4.12), all of the electrons have the same value of axial canonical momen-
tum (P, = YomeBoc) and the same value of total energy (H = yom.c?). When
Eq. (3.4.12) is substituted into Eq. (3.4.8), it is straightforward to show that the
density profile for the electron beam is'??

(]
7, [1 +—M)~:|, 0<r<R,,

2
’)’omec

nd(r)=

0, r>R (3.4.13)

P 3

where R, is determined from the extreme of the interval on which the inequality,

/2
2
{ch“ +c? ['yomeﬁoc + %Az(r)] } —eg’(r) —vom,c* <0,
(34.14)
is satisfied. Note from Eq. (3.4.13) that the electron beam has a sharp radial

boundary at r = R,. When Eq. (3.4.13) is substituted into Eq. (3.4.7), Poisson’s
equation can be expressed as

(]
4me(1 — ), [1 + ﬂ%—] 0<r<Rr,,

13 2 Toree
—_—y— 3° =
@ (34.15)

0, r>Rp.

1'In Eq. (3.4.12) it is not assumed that 4, and g, are related by v=0- B!,
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Furthermore, substituting Eq. (3.4.12) into Eq. (3.4.10), we obtain for the axial
current density!%?

ﬁee e
o, [’yomeﬁoc + ?Az(r)] , 0<r<g,,

2= (34.16)

0, r>Rp ,

and Eq. (3.4.9) reduces to

4an e R
g [yomeﬁoc . Az(r)] , 0<r<R,,

18 8 ,sn_
o o AN = (34.17)

0, r>R,.

From Eqs. (3.4.10), (3.4.13), and (3.4.16), the axial velocity profile for the
electron beam is

Boc + (e[yom, c) AYr)
Ve ()= R (34.18)
1 +e9®@)/yom, c?

for0<r <R,.
Note from Eq. (3.4.14) that the beam radius R, cannot be evaluated explicity

until ¢°(r) and A3(r) have been determined from Egs. (3.4.15) and (3.4.17).
Furthermore, the solutions for ¢°(r) and A%(r) depend on R,. Therefore the
condition that determines R, is, in effect, nonlinear. The solutions to Eqs.
(3.4.15) and (3.4.17) that are continuous at7 = R, have continuous first
derivatives atr = R ,, and satisfy AS(r =0) = 0 = ¢°(r = 0) are

2

erc {1 — Iy [r(1 =) /a]}, 0<r<R,,

¢°() =
'yome(:2

4

{1 —Io[R,(1 —f)"* | 5]

RP 12 V2 r
~ AL R =N (5] b >R,
P (3.4.19)
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70mec260
—— 1 =L/ 8)], 0<r<Rk,,
e p
A50) = |
Yom,c?Bo Rp r
- [1 —IO(RP/S)—711(RP/6) 2n _Rp > r>Rp.

(3.4.20)

In Eqs. (3.4.19) and (3.4.20) /,, is the modified Bessel function of order r,
and & is the collisionless skin depth, defined by ¥

2
Yol
5% = — (34.21)

pe

€

where w2, = 4nnge?m,.
From Egs. (3.4.19) and (3.4.20), the radial electric field, E} (r) = —3¢°(r)/ar,
and the azimuthal self magnetic field, By(r) = —9A4;(r)/r, can be expressed as

_ Yomge® (1 —f)V2
e 6

LIr(d—1)"*/8], 0<r<R,,

_ omee® Ry(1—f)2
e ré

LIR,(—) 8], r>R,,

and

Yo c*Bo
———;——Il(r/&), 0<r<R,,

By(r) =

YoM c%Bo R,

2 > I,(Rplﬁ), r>R

- (3.4.23)

1-'I‘his definition of 5 should not be confused with Eq. (3.3.19).
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Furthermore, when Egs. (3.4.19) and (3.4.20) are combined with Egs. (3.4.13)
and (3.4.18), the electron density profile and axial velocity profile are

i o [r(1 —f)? /8], 0<r<R,,

nd() =

0, , r>R (3.4.24)

p b
and

10(7/6)
Llr(t =" 8]"

for 0 <r <R,. Since I4(0) = 1, it follows from Egs. (3.4.24) and (3.4.25) that
n, = const. and foc = const. can be identified with the values of electron density
and mean axial velocity at r = 0, respectively.

Since the equilibrium distribution function in Eq. (3.4.12) selects H = yom,c?,
the mechanical energy of an electron at radius 7 is y2 (r)mec? = (mZc* + ¢?p}
+c2p2)V% = ed®(r) + yomec?, where p, = (p? +p§)"? is the electron momen-
tum transverse to the beam. Making use of Eq. (3.4.19), we can express
Yo(r) as

Vo.(r) =8¢ (3.4.25)

wf(r) =7olo [r(Q —£)* | 8} (3:4.26)

for 0<r <R,. Note that ¥2(r) has the same functional form as the electron
density profile n2(r) [Eq. (3.4.24], and that yom,c® = const. can be identified
with the energy of an electron as it passes through the axis of the beam (r = 0).

It is also straightforward to calculate the total current carried by the electron
beam for the equilibrium distribution function defined in Eq. (3.4.12). Assum-
ing 8¢ > 0 and making use of Egs. (3.4.24) and (3.4.25), we can express the
magritude of the total beam current as

R
I=2ne ]dr m(W 2o, (r) = (m,cfe) (R, | 28)BoYod1 (R, | 8).
0 (3.4.27)

Evidently, I is sensitive to the value of R,,/6. For a completely neutralized
electron beam (f = 1) it is instructive to express the right-hand side of Eq.
(3.4.27) in units of the Alfvén limiting current /,.1¥? On the basis of Lawson’s
definition of /5 for a nonuniform beam, /, is the beam current at which the
Larmor radius of an electron in the maximum self magnetic field (atr = R,)

is equal to one-half of the beam radius:*~%
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1R, )M cV o (R,) Rp. (3.4.28)
eBy(R,) 2

Making use of Eqs. (3.4.24)-(3.4.28), we can express [, as

L =(m3 [e) Bovolo(R,, /8) 217,000 BoYolo(R, | 8) amperes.
(3.4.29)

Equation (3.4.27) then becomes

R, Ii(R,[5)

A —————IO(R 5 (3.4.30)

Making use of the asymptotic expansions

Jn(A)z °Xp (}\) (I - 4"2 —1

PENE Y + o -) , forA>» 1, (3.431)

and

=N =2 1. ] o<l (43
n )—n! 2 4n+1) » for A <1, (3.4.32)

it follows from Eq. (3.4.30) that

R
I~ 281 >I,, forR >5, (3.4.33)
and
2
p
1:;& <I,,forR, <. (3.4.34)

Equation (3.4.33) states that the beam current 7 exceeds the Alfvén current I
by a large amount whenever the beam radius is much larger than the collision-
less skin depth, R, > &. However, if R, <8, the beam current is much less
than the Alfvén current [Eq. (3.4.34)].

The ratio of beam radius to collisionless skin depth, R, /6, can be related to
v/v4, Where v = N,ro is Budker’s parameter,30 N, is the total number of elec-
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trons per unit length of the beam, and 7o = €?/m,c? is the classical electron
radius. Making use of Eq. (3.4.24), it is straightforward to show that

Rp

N,= 21rf dr m2(r) = (yom,c*/e*)(1 —f)"”(Rp/26)1'1 [R,(1 -V 18].

0

Therefore /Yo can be expressed as

LA . PR T (3.4.35)
Yo 201 _f)uz § 1% i o

If the beam is éompletely neutralized (f= 1), Eq. (3.4.35) reduces to [see
Eq. (3.4.32)]

14 R2
P 48”2 , (3.4.36)

Evidently, R, = 26 accordingly as v}y, $ 1. It follows from Eqs. (3.4.33) and
(3.4.36) that v/ye > 1 is 1equired for the beam current I to exceed the Alfvén
current [, by a large amount.

The beam radius R, is determined from the extreme of the interval on which
the inequality in Eq. (3.4.14) is satisfied. When Egs. (3.4.19) and (3.4.20) are
substituted into Eq. (3.4.14), R, is the solution to'*

1= {13 R, (1 — )2 [ 8] —B3I3(R, / 6)} - (3.4.37)

Note that Eq. (3.4.37) determines R, in terms of f and parameters that char-
acterize the equilibrium distribution function defined in Eq. (3.4.12) (e.g.,

Bo, 70, andz,). Once the values of f, ¢, and v, are speciﬁed,Rp/B can be
evaluated numeiically from Eq. (3.4.37), where & is defined in Eq. (3.4.21).
Since R, /8 is required to be real, there are restrictions on the allowed values of
£, 85, and 73 in Eq.(3.4.37). Keep in mind that yom_c? and Boc are the energy
and axial velocity, respectively, of an electron at r = 0; the transverse speed

B,c of an electron as it passes through the axis (r = 0) of the beam is related to
Yo and B, by

1 2
=Y . 3.4.38
1 _ﬁi _53 Yo ( )

Therefore Eq. (3.4.37) can be expressed in the equivalent form

Bl =B3II3(R, 18)— 1] — (I3[R,(1 )2 /81 —1}.  (3.4.39)
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Making use of Eq. (3.4.39), we can express the conditions 8} > 0 and
B2+ <1as
I3[R, (1-£)"/8] —1
BR,[6)—1

I3[R, (1 —1)"2[5]
13(R,,/5)

2
[+

. (3.4.40)

which places restrictions on the values of 8, and fin order for Eq. (3.4.39) [or
Eq. (3.4.37)] to have real solutions for R, /8 (and hence for the equilibrium to
exist). For example, since B3 < 1 is required, it follows from Eq. (3.4.40) that
the equilibrium does not exist if the beam is completely unneutralized ( f = 0).
For R, /8 < 1, note that the first inequality in Eq. (3.4.40) reduces to [see Eq.
(3.4.32)]

B3>1-f, (3.4.41)

which is the familiar condition that magnetic pinching forces exceed electro-
static repulsive forces for radial confinement of an electron beam with uniform
density and current density (see Section 2.4). For R,/ > 1 and practical values
of ¥¢(Rp). f is required to be very close to unity. For example, if R, /6 = 24.5,
Yo = 2,and f = 0.98, then Y2(R,) = 12 follows from Eq. (3.4.26). However, if
R,[6 =245,7, = 2,and f= 0.5, then Yo(R,) >4 X 10°!

It is evident from Egs. (3.4.22)-(3.4.27) and Eq. (3.4.35) that the equilibrium
properties of the electron beam are quite different in the two regimes: ()
Rp <8,and (b)) R, > 8. In circumstances where the beam radius 1s much smaller
than the collisionless skin depth, R, <3, it follows from Egs. (3.4.24)-(3.4.26)
and Eq. (3.4.32) that n2(r) = 71,, V2,(r) 2 Boc, and v (r) = o, for 0 <r <R,.
In other words, the electron density, axial velocity, and energy profiles are approx-
imately uniform within the beam. Furthermore, from Egs. (3.4.22), (3.4.23)
and (3.4.32) the magnitudes of the radial electric field, £7(r), and azimuthal
self magnetic field, B} (r), increase linearly withr fromr = 0 tor = R,. Making
use of Eqgs. (3.4.32) and (3.4.39), we can express the beam radius, when
R, <38, in the approximate form

281

R2=—"—"3
BE —(1—1)

; 2, (3.442)

which determines R, in terms of f, 83,8, and f}(= 1 —B§ —v¢*). Note that
282 < B2 —(1 —f) is required for R, <3 to be consistent. For the equilibrium
distribution function defined in Eq. (3.4.12), it is evident that the equilibrium
properties of the electron beam are simple to calculate when R, <4. However,
this regime is of little practical interest from the standpoint of high-current
relativistic electron beams.!?2 From Egs. (3.4.27) and (3.4.32) the total current
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carried by the electron beam for R, €8 is [ = (mc®[e)Boyo (R2/46%)
< 17,000 o7y, amperes [see Eq. (3.4.34)].

In circumstances where the beam radius is much larger than the collisionless
skin depth, R, > §, the equilibrium properties of the electron beam are highly
nonunifoim [see Egs. (3.4.22)-(3.4.26)]. For example, when [ # 1, 1t follows
from Egs. (3.4.24)-(3.4.26) that n2(r), V 2,(r), and 7,(r) increase monotonic-
ally™ as functions of r fiomr =0 tor = R,. The equilibrium properties simplify
somewhat when the beam is completely neutralized (= 1). In this case the
equilibrium radial electric field is equal to zero [Eq. (3.4.22)], and the energy
profile is uniform across the beam, that is, ¥.(r) = v, for 0 <r <R, [Eq.
(34.26)].

Furthermore, for f= 1, it follows from Egs. (3.4.24) and (3.4.25) that the
beam density is constant,

n,, 0<r<R,,
n2@) =
0, r>R,, (3.4.43)
and the axial velocity profile can be expressed as
V2.(r) = Boclo(r/5) . (3.4.44)

for 0<r<R,. Evidently, V% (r) increases monotonically from the value
Boc (at r = 0) to the value

VSR, =boclo(R, | 8) (3.4.45)

atr = R,. If the beam radius is much larger than the collisionless skin depth,

R, > 3§, it follows from Eq. (3.4.45) that VZ2(R,) /e =B%(R,) > 5. Since
2:(R,) <1 is required, R, > § is consistent only if 83 < 1.¥ Therefore, for

Rp /8 > 1, the axial current density —en2(r)V %,(r) is highly nonuniform and

TKeep in mind that /, (x) increases monotonically as x increases [see Eqs. (3.4.31) and
(3.4.32)).

*For R pla > 1, the electron motion near the axis (r = 0) is predominately in the trans-
verse direction. For f = 1, Eq. (3.4.39) can be expressed as

R=6BILR,[8)~1]

where g, ¢ is the transverse speed of an electron as it passes through r = 0 {see Eq. (3.4.38)].
For Rp > &8, it follows that g} > 6;.
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most of the current is carried in a thin layer (thickness ~ §) near the surface
of the electron beam. For f= 1, Egs. (3.4.37) and (3.4.39) reduce to

Y51 B +B3

7363 B3

IR, [ 8)= ) (3.4.46)

which determines the beam radius R, in terms of §, 8o, and o (or 8;). Evi-
dently, for R, > § to be satisfied requires 74 — 1> ¥3B2. Asan example, when
(v3 — 1)/v3B% = 127.73, Eq. (3.4.46) gives R, ~4.00 6. The corresponding
radial profiles for n2(r) [Eq. (3.4.43)], V() [Eq. (3.4.44)], and Bj(r) [Eq.

]|

ng (r)

r/78 —

Fig. 342 Plot of n2(r) versus r/8 for the equilibrium distribution function in
Eq. (3.4.12), assuming complete charge neutralization (f= 1) and
(v — 1)/v28% = 127.73. The electron density #2(r) is defined in
Eq. (3.4.43), and the beam radius R, =~4.00 is determined from
Eq. (3.4.46).

(3.4.23)] are plotted in Figs. 3.4.2-3.4.4. Note from Fig. 3.4.3 that the axial
velocity profile is strongly peaked at r = R, with VS,(R,,) = 11.3084c. Since
most of the current is carried in a thin layer near the surface of the electron
beam, the magnitude of the self magnetic field is also strongly peaked at
r=R,(Fig. 3.4.4). For the example illustrated in Figs. 3.4.2-3.4 4, v/v0 = 4
[Eq. (3.4.36)], and the total current carried by the electron beam is / = 1.73 [
{Eq. (34.30)].
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vez(r)
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r/78 —

Fig. 3.4.3 Plot of ¥V %,(r) versus r/8 for the equilibrium distribution function in
Eq. (3.4.12), assuming complete charge neutralization (f= 1) and
(v3 — 1)/¥565 = 127.73. The mean axial velocity ¥ %,(r) is defined
in Eq. (3.4.44), and the beam radius R, ~4.00 § is determined
from Eq. (3.4.46).

It is important to note that other equilibrium properties of the electron beam
can also be calculated for the equilibrium distribution function defined in Eq.
(3.4.12). For example, it can be shown from Egs. (1.3.22)and (3.4.12) that the
equilibrivm pressure tensor for the electrons is of the form

where €, and 'ée are unit vectors in the r- and 8-directions, respectively, and the
transverse electron temperature T'9, (7) is defined by

p? +p}
d*p o4, P)
. 1 f (1 + pz/mgc‘Z)lIQ €
Ta®)= o,

e ﬁ3p o, P,)

(3.4.48)
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Fig. 3.4.4 Plot of Bj(r) versus /8 for the equilibrium distribution in Eq.
(3.4.12), assuming complete charge neutralization (f= 1) and
(y3 — 1)/v3B8% = 127.73. The azimuthal self magnetic field is de-
fined in Eq. (3.4.23), and the beam radius R, =~ 4.00 § is determined
from Eq. (3.4.46).

Equation (3.4.48) follows since f2(H, P,) is an even function of p, and py [see
Eq. (3.4.3)] and is symmetric under interchange of p? and p3. Substituting Eq.
(3.4.12) into Eq. (3.4.48), and making use of Eqs. (3.4.19) and (3.4.20), it is
straightforward to show that

m,c?[2

Yolo Ir(1 _f)1/2/5]

T0= bara—ry 51 -vigrze 19— 1}

(3.4.49)

for 0 <r <R,. The transverse electron temperature decreases monotonically
from T'2,(r = 0) = Yom.c*$}/2, on axis, to T 2, (r = R,) = 0, at the edge of the
beam [see Eqgs. (3.4.37)and (3.4.38)] . Note from Eq. (3.4.47) that the elec-
trons are cold in the z-direction since [P2(x)] ,, = O for the choice of distribu-
tion function in Eq. (3.4.12).

It should be emphasized that Eq. (3.4.12) is only one of a broad class of elec-
tron distribution functions f°(H, P,) that physically correspond to relativistic
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electron beam equilibria.’?2-127 Therefore the choice of f2(#, P,) should be
guided by what seems appropriate in a given experimental situation. For
example, to incorporate a thermal spread in axial velocities, a possible choice of
feH, Py)is

~, — 'Yomeﬁoc)2
fg(HPZ)=NO exp ;— 2 2me®ez S(H.-'Yomecz)’

(3.4.50)

where B, = const., and Ny, ©,,, and 1y, are positive constants.

In concluding this section, it is important to note that assumption 3 can be
relaxed in a straightforward manner to describe relativistic electron beam
equilibria with mean azimuthal rotation. In this case, the equilibrium distribu-
tion function for the electrons is of the form [see Eq. (3.1.12)]

FAx,p)=f2H, Py, P,), (3.4.51)

where H and P, are defined in Eqgs. (3.4.3) and (3.4.4), and Py is the canonical
angular momentum, defined in Eq. (3.1.9). For an electron, P, can be expressed
as

Py=r [p,, — £ 45() - ng(r)] , (3.4.52)

where A§*(r) = rBo /2 (for a uniform external guide field B, €,), and 4§ (r) is the
0-component of vector potential for the axial self magnetic field, BX(r)

= 34y (r)/or + Ap(r)/r, generated by the azimuthal motion of the electron beam.
Since the background ion current is zero (assumption 1), Eq. (3.1.14) can be
expressed as

919 Ane 3
7 3 A= ﬁ puofoH, P, P,), (3.4.53)

which determines A3 (r) [ and hence B3(r)] seif-consistently in terms of f¢ (#,
Py, P,). The self field poteniials, ¢°(r) and A3 (r), are of course determined from
Egs. (3.4.7) and (3.4.9) with f2(H, P,) replaced by fO(H, Py, P,). .

As an example of a rotating relativistic electron beam equilibrium, consider
the electron disttibution function specified by!*3

fg(Hr Pﬂl Pz) =N0 S(Pz _70meBOC) S(H_wepe _70mec2) »
(3.4.54)

where B, = const., w, = const., and N, and 7, are positive constants. For
w, = 0, Eq. (3.4.54) reduces to Eq. (3.4.12) (with No =7, /27y,m,), and there



is no rotation of the electron beam. For w, # 0, however, the mean azimutélyf
velocity ¥ 24(7) is nonzero. For small values of w, it can be shown that the

mean azimuthal motion of the electron beam corresponds to a rigid rotation

with angular velocity ¥ 2(r)/r = w,.

It should also be noted that assumption 1 [n?(r) = fn2(r)] is highly idealized
and probably is not satisfied in many applications of interest. In this regard, it
is straightforward to extend the equilibrium analysis in Section 3.4 to describe
the positive ion background within the framework of the steady-state Vlasov-
Maxwell equations. If the ions are described by an equilibrium distribution
function f f(H),T the procedure for calculating the equilibrium properties of the
electron beam from f 2(H, Py, P;) remains essentially the same. The only
difference is that the electrostatic potential ¢°(r) must be calculated self-con-
sistently using the ion density computed from 7 (#), that is, the right-hand side
of Eq. (3.4.7) must be replaced by

—4mp°() = d ne[ [d°p f2(H, Py, P,) —nf ()] (3.4.55)

where nf (r)= [ &®p 2 (H).

3.5 RELATIVISTIC ELECTRON RING EQUILIBRIA

3.5.1 General Discussion
t

The properties of ring currents of relativistic electrons, contained in a magnetic
mirror field, have been extensively studied in recent years in connection with
electron ring particle accelerators.!®~?7 Theoretical studies of the equilibrium
and stability properties of relativistic electron rings have been undertaken from
two different points of view. The traditional approach is based on single-particle
orbit calculations for rather simple equilibrium configurations, making use of the
concept of betatron oscillations about an equilibrium orbit. This approach lacks
both the flexibility and generality required for investigating more complex
equilibria and the collective instabilities that may develop. The Vlasov-Maxwell
equations, however, provide a natural framework for an analysis of the equili-
brium and stability properties of collisionless charged particle systems (electric-
ally neutral or nonneutral) in which collective effects are important.

TNote from Eq. (3.1.30) that H is an even function of p,, py, and p,. Therefore the mean
ion velocity is V§(x)= f d®p vf} (H) = 0 (see assumption 1). If the ion dynamics are non-
relativistic, i = p?{2m; + ed®(r) + mc?, where m, and +e are the ion mass and charge,
respectively.
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In this section, an example of a relativisitic electron ring equilibrium is con-
sidered which incorporates a thermal spread in energy H of the electrons.3?
Use is made of the steady-state (3/dr = 0) Vlasov-Maxwell description of
axisymmetric mirror-confined equilibria discussed in Section 3.1.3 [see Eqgs.
(3.1.30)-(3.1.34) and Fig. 3.1.2] . Equilibria appropriate to electron ring
accelerators 251297132 possess the essential simplifications that the ratio of
minor dimensions to major dimensions of the ring is small, and that the trans-
verse velocity is small in comparison with the component of velocity in the
direction of the orbit. Therefore the transverse and longitudinal phase spaces
effectively decouple. Although collective effects make very little difference to
the major radius of the ring in the regime of experimental interest, they can be
important in determining the minor dimensions of the ring (especially in fields
with little or no intrinsic axial focusing), and also the stability properties of
the ring.

The equilibrium configuration is illustrated in Fig. 3.5.1. It consists of a
relativistic electron ring located at the midplane of an externally imposed mirror
field B§*t(x). The mirror field acts to confine the ring both axially and radially.
The equilibrium radius of the ring is denoted by R,, and the minor dimensions
of the ring are designated as 2« (radial dimension) and 25 (axial dimension). As
shown in Fig. 3.5.1, a cylindrical polar coordinate system (r, 8, ) is introduced
with the z-axis along the axis of symmetry and z = 0 coinciding with the mid-
plane;r is the radial distance from the z-axis, and 6 is the polar angle in a plane
perpendicular to the z-axis. The equilibrium properties are assumed to be
azimuthally symmetric (8/08 = 0) about the z-axis. The electrons composing
the ring gyrate in the external field B§*!(x) with azimuthal velocities v, in the
positive f-direction. The associated ring current, which is in the negative 6-
direction, produces a self magnetic field B§(x) which threads the ring in the
sense indicated in Fig. 3.5.1. This self magnetic field acts as a focusing field
which tends to compress the minor dimensions of the ring both axially and
radially. The electron ring is assumed to be partially neutralized by a positive
ion background. The excess electrons form a potential well for the ions. The
electrostatic forces on the electrons, however, are repulsive, that is, the self
electric field E® (x) acts as a defocusing field which tends to increase the minor
dimensions of the ring. Although the external magnetic field B§X!(x) is depicted
as a mirror field in Fig. 3.5.1, it should be pointed out that the present analysis
is also applicable if B§*'(x) corresponds to a uniform axial field with B§Xt(x)
= B,¢,, provided the self magnetic field generated by the ring current is suffici-
ently strong to confine the ring axially, and the assumptions enumerated below
are not violated.

To make the theoretical analysis tractable, the following simplifying assump-
tions are made:

1. The positive jons form a partially neutralizing background. The equilibrium
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Axisymmetric equilibrivm configuration for a relativistic electron
ring confined in an external mirror field B§*(x). Cylindrical polar
coordinates (r, 8, z) are introduced with the z-axis coinciding with
the axis of symmetry, and z = 0 at the mirror midplane;r is the radial
distance from the axis of symmetry, and 8 is the polar angle.

ion density n (r, z) and electron density n2(r, z) are assumed to be related

by’r

nd(r,z)=ml(@r, z), (3.5.1)

tIn many applications of interest the assumption » (r, z) = fnJ(r, z) may be highly idealized.
In this regard the equilibrium 2nalysis in Section 3.5 can be extended in a straightforward
manner to describe the ion background self-consistently by means of an equilibrium dis-
tribution function f} (x, p) (see the discussion at the end of Section 3.5).



where f = const. = fractional neutralization. It is further assumed that the
ion current is equal to zero in the laboratory frame.

2. External boundaries are sufficiently far removed from the electron ring that
their influence on the equilibrium configuration can be ignored.

3. The minor dimensions of the ring are much smaller than its major radius, that
is, the ring is thin with

a, b <‘R() . (3-5.2)

4. It is further assumed that

—=— —— <], (3.53)

where v is Budker’s parameter,®® N, is the total number of electrons in the
ring, —e is the electron charge, 1, is the electron rest mass, ¢ is the speed of
light in vacuo, e? /mec2 =y is the classical electron radius, and Y, mec2 is
the characteristic energy of an electron in the ring.

Assumptions 3 and 4, which are consistent with parameters in existing electron
ring accelerator experiments, ensure that the self fields are sufficiently weak that
the equilibtium ring radius R, is equal, in a first approximation, to the Larmor
radius of a single electron with energy y,m.c?. It is informative to rewrite the
inequality in Eq. (3.5.3) in a notation familiar in plasma physics. For a thin ring
with elliptical cross section (minor dimensions equal to 24 and 25), the char-
acteristic electron density is 7, = N./2nRomab. It is straightforward to show
that Eq. (3.5.3) can be expressed in the equivalent form

-2

w
.1=a_b __Pe <1, (3.5.4)
Yo 4

where Gge /Yo = 47 ,€*/m,7, is the electron plasma frequency-squared in the
laboratory frame. Equation (3.5.4) and hence Eq. (3.5.3) are simply statements
that the minor dimensions of the ring are small in comparison with the collision-
less skin depth ¢/wpev5"2.

Central to a Vlasov-Maxwell description of relativistic ring equilibria are the:
single-particle constants of the motion in the equilibrium fields (see Section
3.1.3). For the equilibrium configuration illustrated in Fig. 3.5.1, the single-
particle constants of the motion in the equilibrium fields are the total energy

H and the canonical angular momentum Py, where H and Py can be expressed as
H=(m2c* +c*p*)V? —e¢°(r, 2), (3.5.5)

P, =rm, —%’Agxt(r, 2) — %’ A, 2), (3.5.6)



where ¢°(7, z) is the equilibrium electrostatic potential, 4§*'(r, z) is the 6- ﬁ’é
component of vector potential for the external confining field, A5(r, z) is the
6-component of vector potential for the equilibrium self magnetic field
generated by the azimuthal electron current, p is the mechanical momentum,
and p? =p? +p? +p;. As discussed in Section 3.1.3, any distribution function
F2(H, Py) that is a function only of the single-particle constants of the motion,
H and Py, is a solution to the steady-state (8/0¢ = Q) Vlasov equation for the
electrons. Once the functional form of £ (H, Py) is specified, the electrostatic
potential ¢°(r, z) can be determined self-consistently from the equilibrium
Poisson equation, Eq. (3.1.33). For a partially neutralizing ion background with
density n}(r, z) = fn(r, z) [Eq. (3.5.1)], Eq. (3.1.33) reduces to

|

10,9 4 3 00 5= —y 2y F0
> o’ o ¢%r, z) + bz’¢ (rn.z)=4ne(1 —=f) fd’pf.(H P,), (3.57)

where [ d°p fO(H, Pg) is related to the electron density n2(r, z) by
0 — L3, f0
ne(r' Z)— d pfe(HvPO)s (3.5.8)

and single ionization has been assumed in Eq. (3.5.7). Furthermore, the 6-
component of the vector potential for the equilibrium self magnetic field is
determined self-consistently from Eq. (3.1.34). Since it is assumed that the
equilibrium ion current is equal to zero in the laboratory frame, Eq. (3.1.34)
reduces to

213 92 4
el H () By 50 2)= "= | dPpogf2H, Py), (3.59)

where v, = (py/m,) (1 + p*/m3c®)~'/2 In Eq. (3.5.9), —e [ d*puof O(H, Pp) is
related to the azimuthal electron current J3(r, z) by

I3, 2) = —enl(r, 2)V 5o (r, 2) = we’/;Pp Vo fUH, Py), (3.5.10)

where V' 25(r, 2) is the equilibrium azimuthal velocity of an electron fluid ele-
ment.T In general, the determination of the equilibrium self-field potentials,

Tsince fF2(H, Pg) is an even function of p, and p; [see Egs. (3.5.5) and (3.5.6)], it follows
that

[dpo,foH, Py)=0=[d’pu,fe(H, Py),

where v = (pi/me) (1 +p? /mgc')"’ %2 Therefore the equilibrium flux of electrons in the
r- and z-directions is equal to zero, as expected.
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¢°(r, z)énd A3 (r, 2), from Egs. (3.5.7) and (3.5.9) is not entirely straight-
forward. Since H and Py are functions of ¢°(r, z) and A§(r, z) [see Eqs. (3.5.5)
and (3.5.6)], the charge density and current density in Egs. (3.5.7) and (3.5.9)
are also functions of ¢°(r, z) and A§(r, z). Except for certain simple choice of
f2(H, Py), Eqgs. (3.5.7) and (3.5.9) are generally nonlinear equations for the self-
field potentials. Fortunately, however, an approximate evaluation of the equili-
brium properties of the ring is tractable for a thin ring with vfy, <1 [Egs.
(3.5.2) and (3.5.3)], which is the regime of experimental interest for electron
ring accelerators.

3.5.2 Example of an Electron Ring Equilibrium with Thermal Energy Spread

There is considerable latitude in the choice of equilibrium distribution function
f2(H, Py). Therefore the choice of f(H, Py) should be guided by what
appears appropriate in a given experimental situation. As an example that
illustrates the essential features of the equilibrium analysis, consider the equili-
brium distribution function specified by!32

FAH, Py)) =N, 8(Py —Po) exp [—(H—vom,c* +e¢,)/©,],
(3.5.11)

where ¢, = const., H and Py are defined in Egs. (3.5.5) and (3.5.6), and Ny, Py,
Yo, and ©, are positive constants. For the distribution function defined in Eq.
(3.5.11), note that all of the electrons have the same value of canonical angular
momentum (Py = P,). However, a thermal spread in energy H is incorporated
in the factor exp [~ (H —Yom.c? +edo) [ ©,]. Since the §-function in Eq.
(3.5.11) selects Pg = Py, it follows from Eq. (3.5.6) that electrons located at

(r, z) have azimuthal momentum

Py ed°(,:z
pp= 7+ A LI, (3.5.12)
where
A°(r, 2) = A5 (r, 2) + A5(r, 2) . (3.5.13)

Without loss of generality, in Eq. (3.5.11) yom,c? is taken to be the azimuthal
energy of an electron located at (r, z) = (R, 0) with zero transverse momentum
(p3 =p}? +p% =0), that is,

2
P, eA°(R,,0)
Yom,c? = 3m304 +c? [—0-+-——~—0 ] 2
Ro c

/2



Furthermore, ¢, is taken to be the value of ¢°(r, ) at (r, z) = (R,, 0), 7 ?#

0 =9°(R,,0). (3.5.14)

Since the ring is thin, the transverse (7, z) excursions of the electrons compos-
ing the ring are small in comparison with R, [see Eq. (3.5.2)], and the ex-
ponent in Eq. (3.5.11) can be expanded with ¢?p} <v3(r, z) m2c*, where
p} =p? + p? is the transverse momentum-squared, and ¥, (r, z)m.c? is the
azimuthal energy,

1/2

2
P 0
Yo(r, 2)m c* = gmjc4 +c? [—: +—6ﬁ4;%’—zl] s ) (3.5.15)

Approximating H = v,(r, z)m,c? + (2m,) ' P2 [1o(r, z) —e¢°(r, z) [see Eq.
(3.5.5)], we can express the equilibrium distribution function defined in Eq.
(3.5.11)as

FOH, Py) =N, 5(P, ’—PO)eXp;-—ﬂﬁ;’%@ zexp %—11%62 f .
(3.5.16)
where
Y(r, 2) = [v,(r, 2) — vl m,c* —e 8¢°(r, 2) (3.5.17)
and
8¢°(r, 2) = ¢°(r. 2) — %o - (3.5.18)

Equation (3.5.16) is a sufficiently accurate representation of f2(H, Py) for
present purposes. The approximate form of A used in obtaining Eq. (3.5.16) is
valid provided the transverse kinetic energy, p3/2m,v,(r, z) is small in compari-
son with the azimuthal energy, y4(r, z)m.c?. It is straightforward to show that
this inequality is satisfied (in an average sense) provided ©, < v4(r, z)mec?,
which is assumed to be the case.” For future reference, note from Eq. (3.5.17)
that Y(R,, 0) = 0, since §¢°(Ro, 0) = 0 and v9(Ro, 0) = 7o

The macroscopic equilibrium properties of the electron ring, for example,
density profile, azimuthal velocity profile, and transverse temperature profile,

TThe condition for the average transverse kinetic energy to be small in comparison with
the azimuthal energy is <pl >/2mevg(r, 2) < v4(r, z)myc?. Combining this inequality
with Eqgs. (3.5.21) and (3.5.23) gives ©, < v4(r, Z)mgc?.
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can be determined by calculating the appropriate momentum moments of Eq.
(3.5.16). For example, substituting Eq. (3.5.16) into Eq. (3.5.8) and repre-
senting f d*p = 2 [7_dpy [ dp,p,, we can express the electron density

0
n2(r, z) as

—_ Ro %6, Z)

nd(r,z)= o

(3.5.19)

_ ¥, 2)

®e
where 1, =n2(Ro, 0) is the electron density at (7, z) = (Ro, 0). [In terms of
e, the normalization constant in Eq. (3.5.16) is Ny = 72,R o /(27@,vem,).]
The azimuthal velocity of an electron fluid element, ¥ %(r, 2), and the trans-

verse temperature profile, T 2, (7, z), are defined in terms of the equilibrium
distribution function, fo(#, P,), by’

3 czpo 0
d p(mz ) +czp2)1/2f€(H’ Py)
e
Vgo(r, z)=
Serreary

(3.5.20)

and

i Je L arLE,)
. _2 p (mjc“ +c2p2)"2 e\t o
T 2z)= ; (3.5.21)

Substituting Eq. (3.5.16) into Egs. (3.5.20) and (3.5.21) gives

Py
Vgo(r,z) m[‘_ —-A°(r Z)} (3.5.22)

TFor the equilibrium distribution function defined in Eq. (3.5.11), it can be shown from
Eq. (1.3.22) that the equilibrium stress tensor for the electrons is of the form

P(x) = n(r, )T, (r, 2) (6,6, + &,6,),

where 13 (r, z) and TS, (r, z) are defined in Eqgs. (3.5.8) and (3.5.21), and €, e, and €, e, are unit
vectors in the r- and z-directions, respectively. This result follows since f e(H Pg)isan
even function of p, and p, [see Egs. (3.5.5) and (3.5.6)] and is symmetric under inter-
change of p? and p%. Note that the electrons are cold in the g-direction, since

[P2(x)] gg = O for the choice of distribution function in Eq. (3.5.11).



and %?_9

T z)=0,. (3.5.23)
In obtaining Eqs. (3.5.22) and (3.5.23), the approximation
{m2c* + [Py /7 +eA%(r,2) | €)® + P2} V2 =~ [y, (r, 2)m,c?] !

has been made in the integrands of Eqs. (3.5.20) and (3.5.21) {see Eq. (3.5.15)
and the discussion preceding it]. The errors incurred in Egs. (3.5.22) and
(3.5.23) by this approximation are of the order ©,/y4(r, z)mc? < 1. For a thin
ring with equilibrium distribution function given by Eq. (3.5.16), it follows
from Eq. (3.5.23) that the transverse temperature profile is isothermal with
temperature T'9,(r, z) = ©, = const. Note from Eqs. (3.5.19) and (3.5.22) that
the equilibrium density and velocity profiles, nd(r, z) and ¥ %(r, 2), are deter-
mined in terms of the self-field potentials, ¢°(r, z) and A§(r, z), and other
properties characteristic of the equilibrium distribution function, for example,
Py, yom,c?, and A§*'(r, z). The self-field potentials may be calculated self-
consistently by substituting Eqgs. (3.5.19) and (3.5.22) into Egs. (3.5.7) and
(3.5.9), and solving the resulting equations for ¢°(#, z) and A§(7, z).

3.5.3 Electron Density Profile

It is of considerabie interest to determine a closed expression for the r-z
dependence of the electron density profile n2(r, z). For a thin ring with
/7o <1, the variation of v,4(r, z) and 1/r across the minor dimensions of the
ring is small. Therefore Eq. (3.5.19) can be expressed in the approximate form

n2(r, z) = n, exp {— E(%i) s . (3.5.24)

e
The detailed shape of the density profile is contained in the factor
exp {—v¥(r, 2)/©,} in Eq. (3.5.24). Following Davidson, Lawson, and
Mahajan,?*'3* we Taylor expand the expression for Y(r, z) given in Eq. (3.5.17)

about (r, ) = (R, 0) fora, b € R, and v}y, < 1. Introducing p =r — Ry, and
neglecting terms higher than quadratic order, we can express

Ve, = o |2 00, ) ot | L ve. z)] tpr| e z)]

P29 ] 2_2[_3?_ +
+ > [aﬂ Y(r, 2) Roo + e ¥(@r, 2) PR

[}

(3.5.25)
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whetre use has been made of ¥(Rg, 0) = 0 [see the discussion following Eq.
(3.5.18)].

The evaluation of the coefficients in Eq. (3.5.25) closely parallels the analysis
in Section IV and Appendix A of Reference 25. Therefore, for present purposes,
it is adequate to outline the results, and the reader is referred to Reference 25
for further details on procedure. First, it can be shown from Eq. (3.5.17) that
[0¥(r, 2)/3z] r,,0 = 0 and [3* Y(r, 2)/3r 3z] g, 0 = O follow directly from axial
symmetry of the equilibrium configuration about z = Q. [In particular, the
coefficients of z and pz vanish in Eq. (3.5.25) since the radial magnetic field and
axial electric field are identically zero in the midplane, that is, BS(r, 0) = 0
= E2(r, 0), where BS(r, z) = —0A4°(r, z)/0z and E 2(r, 2) = —3 8¢°(r, 2)/3z.]
Second, the requirement that [0y(r, 2)/0r] g o = 0 is imposed, which assures
that the term linear in p is absent in Eq. (3.5.25). This condition effectively
determines the equilibrium radius Ry that corresponds to the geometric center
of the beam. Making use of Eq. (3.5.17) and the definitions of radial electric
field [E %(r, z) = —3 §¢°(r, 2)/0r] and axial magnetic field [B2(r, z)
=3A4°%(@r, z)/or + A°(r, z)[r] , we can express the condition [3¥(r, z)/or] R,,0=0
in the equivalent form

m,_B2c?
— % =—eE2(Ry,0) —eB,B2(R,, 0), (3.5.26)
where Bgc = V% (Ro, 0) =m ' v5! [Po/Ro +eA°(Ro, 0)/c] is the azimuthal
velocity of an electron fluid element located at (r, z) = (R, 0) [see Eq. (3.5.22)].
Equation (3.5.26), which is a statement of radial force balance on an electron
fluid element at (r, z) = (Ro, 0), effectively determines the equilibrium radius
R, of the ring. For a thin ring with »/y, <€ 1, the self-field contributions in Eq.
(3.5.26) are small in comparison with B$*(R,, 0), and Eq (3.5.26) can be
approximated by'*

YomB3c?

Ry = B Ro,0) (3.5.27)

correct to lowest order. Since the terms in Eq. (3.5.25) that are proportional to
P, z, and pz vanish, Eq. (3.5.25) reduces to

2 2 2 2
y(r, z) = %—[%; v(r, z)] c o +i2 [& W, z)] , (3.5.28)

R,,0

where terms higher than quadratic order have been neglected. When Eq. (3.5.28)
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is substituted into Eq. (3.5.24), it is found that n2(r, z) has a Gaussian profile
about {r, z) = (R,, 0), that is,

o _ 02 22
n)(r,z) =7, exp { — 2 2 (3.5.29)
where p =r — Ry, and
d_1[e ]
az'_ @e[ar2 w(r’ z Ro, ’ (3'5'30)
1_ 1[92 ]
) [_322 U, z R0 (3.5.31)

To evaluate a? and b?, the analysis in Reference 25 is paralleled. For a thin
ting with v/ye <€ 1, it is straightforward to show from Egs. (3.5.17), (3.5.30),
and (3.5.31) that

2 2
1 Yomee® B Rge [a d ]
—= — {1 —n+—————{—E%, z)+B, —B
0 2{ YoBymc® LOr Sl P

(3.5.32)

and

1 Yome® B Rie [a 5 2 ]
b2 O, R} n+7oﬁémec2 225202 "8 3B 0D fp o -

(3.5.33)

where # is the external field index at (7, z) = (R,, 0),

= — __.r—.___g 1
n= [Bext(r 2) b z)] R,.0 - (3.5.34)
z ]

Since the self fields are weak for »/yo < 1, terms in Eqgs. (3.5.30) and (3.5.31)
that are proportional to £ 2(Ry, 0) and B5(R,, 0) have been consistently ne-
glected in obtaining Egs. (3.5.32) and (3.5.33). Terms that are proportional to
gradients of the self fields, however, are retained in the analysis, for example,
[085(r, 2)/or] &0 and [2E2(, 2)/or] z, 0.



In order to obtain closed expressions for @ and b it is necessary to evaluate the
self-field gradient terms in Eqs. (3.5.32) and (3.5.33), a procedure that requires
a self-consistent determination of ¢°(r, z) and A5(#, z) from Egs. (3.5.7) and
(3.5.9). Considerable simplification occurs in the analysis since a, b €R,,
vlvo €1, and only the self-field gradients evaluated at (R, , 0) are required in
Egs. (3.5.32) and (3.5. 33) In Poisson’s equation [Eq. (3.5.7)], use is made
of the expression for nQ(r, z) given in Eq. (3.5.29). Moreover, since V % (7, z)
varies only a small amount across the minor dimensions of the ring, the approxi-
mation V g9 (7, z) =Bgc =V §(Ro, 0) = 15 m;" [Po/Ro +eA°(Ro, 0)/c] [see
Eq. (3.5.22)] is made in the V X B} Maxwell equation [Eq. (3.5.9)]. Introduc-
ing the variable p =r — R, we can then express Eqs. (3.5.7) and (3.5.9) as

32 2 _ 2 2
(W + 5"7) #°(p, 7) = 4me(1 —f)F, exp (— o —i—) , (3535)

and

92 9%\ s — p> 22
( 207 +¥2- Ag(p, z) = 4mefyn, exp —Z_IIQ—E , (3.5.36)

where the differential operators on the left-hand sides of Eqgs. (3.5.7) and (3.5.9)
have been approximated by their limiting values for b/Ro, @/Ro — 0. In terms
of a Fourier integral representation, the solution to Eq. (3.5.35) is

oo oo

¢°(p, z) = —4ne(l —f) %ﬁe/;lkﬁQ exp (tkz +i%p)
exp (—a®22/2 —b*k?[2)
2% +k? ’

(3.5.37)

and the solution to Eq. (3.5.36) can be expressed in a similar form with (1 —f)
replaced by ;. Making use of the integral representations of #°(p, z) and
A§(p, 2), it is straightforward to evaluate the self-field gradient terms in Egs.
(3.5.32) and (3.5.33). For example, it follows from Eq. (3.5.37) that

[iE 2(r Z)] = —[—Qi¢°(p, Z)]
oz &’ R,,0 az? 0,0

oo

k2 exp (—a?Q?2 — b2k2/2)
= —re (1 1) 227 /;ik f T

—co —0

(3.5.38)
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Carrying out the integrations in Eq. (3.5.38) gives 75 5

[a—zEg(r z)] = —4ne(1 —f)A, + 5 (3.5.39)

In a similar fashion it can be shown that

_ _ b
[—~E°(r z)] R0 4me(1 —f)n, P (3.5.40)
2p ] = —dnef, A, —— 3.5.41
0z A 2) Ro,o— meBy 7, a+b’ (3.541)
9 ps - = _b_
[ B (r, z)] 0o dref,n, PR (3.5.42)

D)

correct to lowest order ina/Ro, b/R,. Substituting Egs. (3.5.39)-(3.5.42) into
Egs. (3.5.32) and (3.5.33) gives!32

Yom,c? (2 R}
Lol B by, 2 ——— (G2 +f—1)| , (3.5.43)
a2 ®e Ro 70 a( +b)ﬁ9
and
YoM c2 Bz RZ
L T o 2L @ +r-1) (3.5.44)
b? ®, R} Yo b(a + b)B2

where v = (N, f21R, )(e? /m.c?) is Budker’s parameter, and N, = (27R)
X2(mab)n, = 2nR,n, f [ dp dz exp (—p*[2a* —z*|2b?) is the total number of
electrons in the ring. Equations (3.5.43) and (3.5.44) constitute closed equa-
tions for @ and b in terms of properties of the equilibrium distribution function
(e.8., 0., 70, Bs) and the external field configuration (e.g., n).

The expressions for 2 and b given in Eqs. (3.5.43) and (3.5.44) correspond to
the radial and axial betatron oscillation amplitudes'**** (including equilibrium
self-ficld effects) for an electron with transverse energy equal to the thermal
energy ©,. Note that the thin ring approximation [Eq. (3.5.3)] is valid only if
the energy spread of the electrons is small, that is, ©, <yem.c?. Furthermore,
the self-field contributions in Egs. (3.5.43) and (3.5.44) [the terms proportional
to (B3 +f—1)] are in the direction of focusing the beam, that is, decreasing a*
and b2, only if

B2>1~f. (3.5.45)
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Equation (3.5.45) is the familiar condition that magnetic pinching forces exceed
electrostatic repulsive forces.?>>%

The sensitive dependence of equilibrium properties on the choice of f2(H, Py)
should be noted. In Reference 25, where all the electrons are assumed to have
the same value of total energy H and the same value of canonical angular momen-
tum Py, that is, f 2 (H, Pg) = No 8(H — yemc® + edo ) 8(Py —Po), it is found
that the transverse temperature profile is parabolic with T'g, (r, z) assuming its
maximum value at (r, z) = (R,, 0). Furthermore, in Reference 25 the electron
density is approximately constant in the ring interior, and the minor cross
section of the ring has a sharp boundary with envelope equation
p%ja® +22/b? = 1.¥ Thisis in contrast to the results obtained for the equili-
brium distribution function in Eq. (3.5.11), where the transverse electron
temperature profile is found to be isothermal {Eq. (3.5.23)], and the minor
cross section of the ring has a diffuse boundary [Eq. (3.5.29)]. It may be
anticipated that the stability properties of these two equilibrium distribution
functions are also quite different.

In conclusion, it is important to note that the assumption that the ion density
profile satisfies n(r, z) = fn2(r, z) is highly idealized and probably is not satisfied
in many applications of interest. In this regard it is straightforward to extend
the present equilibrium analysis to describe the positive ion background within
the framework of the steady-state Vlasov-Maxwell equations. If the ions are
described by an equilibrium distribution function f?(#),* the procedure for
calculating the equilibrium propezties of the electron ring from £3(H, Pg) re-
mains essentially the same. The only difference is that the electrostatic potential
¢°(r, ) must be calculated self-consistently, using the jon density computed
from P (H). In other words, the right-hand side of Eq. (3.5.7) must be replaced
by

—anp®(r, 2) = 4me[ [d®p f2(H, Py) —nl(r, 2)] (3.5.46)

where nl(r, z) = [ d®p [ (H).

THere a and b are defined in Eqs. (66) and (67) of Reference 25.

¥See Section VI of Reference 25. Note from Eq. (3.1.30) that H is an even function of
Py Pg, and p,. Therefore the mean ion velocity is

0,y -
Vix)=sd*pvfi(H)=0
(see assumption 1). If the ion dynamics are nonrelativistic, then
H=7p*[2m; +ep°(r,z) + mge?

follows from Eq. (3.1.30), where m; and +e¢ are ion mass and charge, respectively.
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3.6 STABILITY THEOREM FOR NONRELATIVISTIC
NONDIAMAGNETIC EQUILIBRIA

The detailed stability properties of spatially nonuniform Vlasov equilibria with
equilibrium self fields are usually difficult to ascertain analytically. Therefore
even a sufficient condition for stability is a welcome result since it provides
valuable information regarding the class of equilibrium distribution functions
that may be unstable. In this section a sufficient condition for stability 7 is
derived for the nonrelativistic, nondiamagnetic Vlasov equilibria discussed in
Section 3.2. The equilibrium configuration consists of a nonneutral plasma
column aligned parallel to a uniform external magnetic field, BX'(x) = By €,
(see Fig. 3.1.1). Asin Section 3.2, the equilibrium properties are assumed to be
independent of z (0/9z = 0) and azimuthally symmetric (3/36 = 0) about an
axis of symmetry parallel to B(,Qz, and the influence of external boundaries is
ignored. Furthermore, it is assumed that the particle motions are nonrelativistic,
and that the axial and azimuthal self magnetic fields, B3(r) and By(r), are
negligibly small. For simplicity, it is also assumed that the nonneutral plasma
column is composed only of electrons.t In general, the equilibrium distribution
function for the electrons is of the form

fe(x,p)=f¢(H, Py, p,), (3:6.1)

where p, =m,v, is the axial momentum, and

2
=P .0
H= 2, e’ (), (3.6.2)
Q
Py=r (ps —m,r -2—e) . (3.6.3)

The notation used in Egs. (3.6.1)-(3.6.3) is the same as in Section 3.2, and the
equilibrium electrostatic potential ¢°(r) is determined self-consistently in terms
of fI(H, Py, p,) from the equilibrium Poisson equation, Eq. (3.2.5).

To determine the stability properties of the equilibrium distribution function,
fF2(H, Py, p,), the time development of perturbations about equilibrium is
examined within the framework of the Vlasov-Maxwell equations (see Section
1.3.2). For the equilibrium configuration considered here, the electron distribu-
tion function, fe(x, p, 1), electric field, E(x, t),and magnetic field, B(x, ), can
be expressed as

fe(x, P, t) =fg(H: Po’pz) + Qfe(x, P’ t) > (3'6'4)

1'The analysis can be extended in a straightforward manner to include ions (see the discus-
sion at the end of Section 3.6).



7 5Z E(x, 1) =E2(PE, + 8E(x, 1), (3.6.5)
B(x,f) = B, €, + 5B(x,1), (3.6.6)

where €, and €, are unitvectors in the - and z-directions (see Fig. 3.1.1),

E2(r) = —0¢°(r)/0r is the equilibrium radial electric field, and the equilibrium
self magnetic fields have been neglected in Eq. (3.6.6). In the present analysis,
a sufficient condition for stability of the equilibrium distribution function
FA(H, Py, p,) is derived in the electrostatic approximation. In other words, it is
assumed that the perturbed magnetic field, 8 B(x, 7), remains negligibly small as
the system evolves, and the V X E Maxwell equation, Eq. (1.3.4), is approxi-
mated by

V XE(x,1)=0. (3.6.7)

The analysis can be extended in a relatively straightforward manner to include
the perturbed magnetic field §B(x, #). (See the discussion at the end of Section
3.6.) Approximating B(x, £) = B, €, in Eq. (1.3.2), we can express the Vlasov
equation for fo(x, p, ) as

d ) VXBogz d
{at+" ax e[E(x,t)+ p ] ap f(x,p,0)=0,

(3.6.8)

where v = p/m,, since the particle motions are nonrelativistic. The electric field
E(x, t) in Eq. (3.6.8) is determined self-consistently in terms of f,(x, p, t) from
Poisson’s equation, Eq. (1.3.6). Since no ions are present, Eq. (1.3.6) reduces to

V- EXxH= —47re'/-d3p f.(x,p, D), (3.6.9)
where —e is the electron charge, and pey (x) = O is assumed. Note that Eq.
(3.6.8) is fully nonlineas, that is, no small-amplitude approximation has been

made in this equation.
To derive a sufficient condition for stability, consider the function F(t),

defined by”’
2 __ 102
F@) Jd3x 3 E——SNE— +ﬁ3p

" l:(zl:"e_wepf’> (fe _fg) +G(f)-GUH ||, (36.10)

Ea




where spatial integrations are over the infinite domain ,T and G is a smooth and 75 72
differentiable (but otherwise arbitrary) function of its argument f,. In Eq.

(3.6.10), w, = const., Py is defined in Eq. (3.6.3), and the abbreviated notation,

E = E(x,2), E° = B)(1)€,, f, = fo(x,p, 1), and f¢ = f2(H, Py, p.), has been

introduced. Making use of Eqs. (3.6.7)~(3.6.10) and some straightforward

integration by parts, we can show that

d d3XA
th(t) = wf/-—z;*ez'xx EV-E

3 2 T .
=—w,,_/7’—47§s, -V [xX (EE —%1)] (3.6.11)

where [ ] 7 denotes diadic transpose. The right-hand side of Eq. (3.6.11) in-
tegrates to zero provided the perturbed electric field, E = E — E°, vanishes
sufficiently rapidly as x > o, Therefore dF(r)/ds = 0, that is,

F(t) = F(0) = const. (36.12)

Note that the constancy of F is an exact consequence of the fully nonlinear
Vlasov-Poisson equations.

Now consider small-amplitude perturbations. Taylor expanding G(f,)
=G(f2 + 8f,) for small &f, gives

(1)
G(fe)=G(f2) +G'(f) 8f, +G"(f2)—i)—+ ces . (36.13)

Correct to second order in the perturbation amplitude, Eq. (3.6.10) can be

expressed as
F@) =ﬁ3x @g@ﬁ ‘i:/‘dap
n

X { [ p’ —e®(r) —w, Py + G'(fg)] 5f,

2m,

6 2
mn(fg)(_f;»_} , Bs14

HIf fe(x, p, 1) and E(x, £) are spatially periodic in the z-direction with periodicity length
2L, then
L
Jax =f°_'¢dxf'_°wdyf_Ldz

in Eq. (3.6.10).



where SE=E —E° and §f, = f, —f2. In obtaining Eq. (3.6.14) from Eq.
(3.6.10), use has been made of Eq. (3.6.13) and the identity

QEEO. _f.di’io - 3, 20 f 43
f41rE SE=[=,—¢°V SE=—e [d’x ¢° [d°p 5f,, (3.6.15)

which follows from E® = —V¢° and V + E = —4ne f d°p 6f.. The function
G(f?2), which has been arbitrary up to this point, is now chosen to satisfy

G'(fy=—H—-wn>P,), (3.6.16)
where H = p*/2m, —e¢°(r). The choice of G'(f?) in Eq.(3.6.16) implies that
f2 depends on H and P, through the linear combination H — w,P,, that is, the
analysis is restricted to rigid-rotor equilibria with £ (H, Py, p,) = fU(H — w,Py).

Making use of Eq. (3.6.16), we find that the term linear in §f, vanishes in Eq.
(3.6.14), and F(?) reduces to

2
FO =ﬁ3x[@;l 4fd3p G"(fg)(a—%)—] (36.17)

Differentiating Eq. (3.6.16) with respect to £ gives

1

G U= 3.6.18
U= e @ —ay) G619
Substituting Eq. (3.6.18) into Eq. (3.6.17), we can express F(2) in the equivalent
form
(BE)? f QAL
F :'/213 22y ey Pled . (36.19
” { 8 ?72 orepa—wgy) | ¢4
If
3
AH =Py el ~©ePy) <0, (3.6.20)

it follows from Eq. (3.6.19) that F®) is a sum of nonnegative terms. Since F
is a constant, the perturbations § E(x, r) and 6f,(x, p, £) cannot grow without
bound when Eq. (3.6.20) is satisfied. Therefore, a sufficient condition for
stability can be stated as follows:

If fo(H — w_Py) is a monotonically decreasing function of H — w,P,, the
equilibrium is stable to small-amplitude electrostatic perturbations. (3.6.21)
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Equation (3.6.21) is the generalization of Newcomb’s theorem " to a non-
neutral, rotating plasma. The sufficient condition for stability stated in Eq.
(3.6.21) is especially significant since it is applicable to spatially nonuniform
equilibria characterized by an equilibrium self electric field, E°(x) =
—%€, 0¢°(r)/dr. The stability theorem is applicable to surface perturbations as
well as perturbations interior to the electron gas column. As an example, note
that the Gibbs distribution function [Eq. (3.2.32)],

1,
fg(H—‘wePO) = Wexp {—(H—wePo) / @e} , (3.6.22)

is electrostatically stable within the context of the present analysis. The loss-
cone distribution function specified in Eq. (3.2.21), however, may be unstable
since it is not a monotonically decreasing function of H — w,.Py (see Section
3.7.3).

Several important generalizations of thc preceding analysis can be made. First,
if the analysis is extended to include a perturbed magnetic field 8 B(x, ) the same
stability condition is obtained.’*® In other words, 8f J(H — w, Py )[d(H — w.Pg)
< 0 is a sufficient condition for stability of f2(H — w,Py) to small-amplitude
electromagnetic perturbations with arbitrary polarization. Second, the stability
theorem is readily extended to a multicomponent nonneutral plasma provided
each component is rotating with the same angular velocity, w, = wy = const.

It is found thatT 3f Q(H — wo Py )/d(H — woPy) < 0, for each e, is a sufficient
condition for stability of f 2(H — wgPg) to small-amplitude perturbations.
Finally, following Gardner,'#° the stability theorem can be extended to show
that 3f Q(H — wo Py )/d(H — woPy) <0, for each a, is a sufficient condition for
nonlinear stability of fQ(H — woPp) to arbitrary-amplitude perturbations.

3.7 BODY WAVES IN A NONNEUTRAL PLASMA COLUMN

3.7.1 Equilibrium Configuration and Assumptions

In this section the time-dependent Vlasov-Maxwell equations™ ”” are used to
study the dispersive properties of small-amplitude perturbations propagating in

TReep in mind that
H=9*|2m, +e0°r) and Py=r(pg+ myre,2,/2)

for a particle of species a.
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the interior of a constant-density nonneutral plasma column aligned parallel to

a uniform external magnetic field BX'(x) = B, €, (Fig. 3.1.1). The notation and
general assumptions regarding the equilibrium configuration (i.e., azimuthal
symmetry, nonrelativistic particle dynamics, negligible diamagnetism, etc.) are
the same as in Section 3.2 (see also Section 3.6). It is further assumed that per-
turbations are about rigid-rofor equilibria of the form discussed in Section 3.2.2,
that is, the equilibrium distribution function for the electrons is of the form

2, p)=f2H —w,Py, p;), (3.7.1)
where
p2
— —_ (1}
H=m, 769 0), (3.7.2)
Qe
Py=r (pe —mer—i") , (3.7.3)

P, = m,v, is the axial momentum, and w, = const. = angular velocity of mean
rotation. For simplicity, the stability analysis is carried out for a pure electron
plasma. The resulting dispersion relation is then generalized to a multicompon-
ent nonneutral plasma.

As discussed in Section 3.2.2, if w, is closely tuned to the laminar rotation
velocity w3 or w; [Eq. (3.2.19)], the electron density profile n(r) has a
characteristic radial dimension R, much larger than a thermal electron Debye
length, and the electron density is approximately constant in the column interior
(Fig. 3.7.1). In other words, if

w,=wi(1-8) or w,=w;(1+8), 0<6<1, (3.7.4)

where

— 1/2

1+ {1——2 , (3.7.5)

then the electron density profile can be approximated by

n, = const., 0<r5Rp s

n2(r) =

0, r >R (3.7.6)

~""p ?

for equilibrium distribution functions of the form f(H — w.Pg, p,). In Eq.
(3.7.5), Q, = eBo/m.c and w3, = 4, e* /m,. For constant-density rigid-rotor



&
equilibria with w, = w} or w, ~ w,; [Eq. (3.7.4)], it is relatively straigﬁ {
forward to determine the detailed stability properties of f2(H — w.Pg, P,),
assuming small-amplitude perturbations localized to the column interior
(r <R,), with characteristic transverse wavelength |k, |~ small in comparison
with the column radius R,

BR2>1. (377

Fig.3.7.1 Plot of n2(r) versus r for nonneutral rigid-rotor equilibria of the
form f$(H — wePy, p.) for the case in which w, is closely tuned to
the laminar rotation velocity wp or w; [Eq. (3.7.4)]. The electron
density is approximately constant in the column interior.

For such perturbations the analysis of the linearized Vlasov-Maxwell equations
simplifies considerably since the column radius is effectively infinite, and
boundary conditions at » = R,, can be ignored.

Wave perturbations inside the plasma are known as body waves. Before deriv-
ing the dispersion relation for body waves in a nonneutral plasma column, it is
useful to summarize some additional properties of the equilibrium. In general,
the linear combination H — w,Py that occurs in Eq. (3.7.1) can be expressed as

H—wrPy=[p} +(pg —mrw,)* +p;]/2m,
m
+—23I}2(weﬂe —w?)— —2m£ ¢°(r)] , (3.7.8)
e

where use has been made of Eqs. (3.7.2) and (3.7.3). For a constant-density ,



cthnn [Eq. (3.7.6)], the equilibrium Poisson equation can be integrated to give

P = "e r (3.7.9)

for 0 <r <R,. Moreover, the equilibrium electric field E°(x) in the region
o<r <R, can be expressed as

0 — 0 — meaze o
E°(x) = —V¢ (r)—~—T ré, (3.7.10)
where €, is a unit vector in the r-direction (see Fig. 3.1.1). Substituting Eq.

(3.7.9) into Eq. (3.7.8), and making use of Eq. (3.7.5), we can express
H— w,Py as

H—w,Py = [p} +(pg —m,rw,)* +p?] /2m,
m, . )
——2—(we —wlw, —w)r? (3.7.11)

for 0 <r <R, Since w, = wp or W, = w, for a constant-density column,
Eq. (3.7.11) reduces to

H—w,Py = [p} +(pg —m ) +p?] | 2m, (3.7.12)

in the column interior.

In summary, for the subclass of rigid-rotor Vlasov equilibria with w, >~ w7
or w, = w3 [Eq. (3.7.4)], the electron density is constant in the column interior
[Eq. (3.7.6)], the radial electric field varies linearly with radial distance r from
the axis of rotation [Eq. (3.7.10)], and H — w,.Py can be identified with the
kinetic energy of an electron in a frame of reference rotating with angular
velocity w, = const. [Eq. (3.7.12)].

3.7.2 Electrostatic Dispersion Relation

To determine the stability propeities of the equilibrium distribution function
Fo(H —wePy, p,), the time development of perturbations about equilibrium is
examined within the framework of the Vlasov-Maxwell equations (see Sections
1.3.2 and 3.6). In this section the dispersion relation for body waves in a con-
stant-density nonneutral plasma column is derived in the electrostatic approxi-
mation.”™ 7" In other words, it is assumed that the perturbed magnetic field
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8B(x, ) = B(x, ) — By €, remains negligibly small as the system evolves, and
the VX 6E Maxwell equation, Eq. (1.3.15), can be approximated by

V X 5E(x,1) =0, (3.7.13)

where 8E(x, 1) = E(x, £) — E®(x) is the perturbed electric field.¥ Approximating
B(x, 1) = B,€, in Eq. (1.3.14), we can express the linearized Vlasov equation for
the perturbed distribution function 8f,(x, p, £) = fo(x, p, 1) —f& (H — w P, p,)

as
B8l YXBE] o
{ 5% +v ax ¢ [E (x) + z 3 of(x,p,?)
2
=edE(x,1) - a—p—fg(H'—weP , pz) , (3.7.14)

where v = p/m, (since the particle motions are nonrelativistic). The perturbed
electric field 8E(x, ¢} in Eq. (3.7.14) is determined self-consistently in terms of
8f,(x, p, t) from Poisson’s equation, Eq. (1.3.17). Since no ions are present,
Eq. (1.3.17) reduces to

A-SE(x,t)= —4n¢e'/:i3p 8f.(x, p, ). (3.7.15)

Note from Eq. (3.7.13) that 6E(x, #) can be expressed as
SE(x,t) =—Va¢(x, 1) (3.7.16)

in Eqgs. (3.7.14) and (3.7.15). In obtaining Eq. (3.7.14), it has not been assumed
that the electron density is constant in the column interior or that w, ~ w?.
Equations (3.7.14)-(3.7.16) are applicable for small-amplitude electrostatic
perturbations about arbitrary rigid-rotor equilibria characterized by the equili-
brium distribution function f3(H — w2y, p.) and the self-consistent electric
field E° (x).¥

v

TKeep in mind that the equilibrium electric field E®(x) is curl-free, Vv X E°(x) = 0 [Eq.
(1.3.9)].

*In general, E°(x) = —'e‘,. 3¢ (r)/ar in Eq. (3.7.14), where ¢°(r) is determined self-con-
sistently from

1 9 a3
T ot Ty OO = 4ne [ [3EH — o P,p,).
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In circumstances where the electron density is constant in the column interior,
Davidson and Krall have integrated Eq. (3.7.14), using the method of character-
istics.”” This approach involves a detailed calculation of the particle trajectories
in the combined equilibrium electric field E®(x) [Eq. (3.7.10)] and magnetic
field BOQZ. As an alternative approach, whereby the electrostatic dispersion re-
lation can be obtained directly by analogy with the neutral plasma case, it is
useful to transform Egs. (3.7.14) and (3.7.15) to a frame of reference rotating
with angular velocity w, = const. about the axis of symmetry (Fig. 3.7.2). In-
troducing cylindrical polar coordinates, we transform Egs. (3.7.14) and (3.7.15)
from the independent variables (x, p, f) in the laboratory frame to the independ-
ent variables (x', p, ¢') in the rotating frame, where

r'=r, 0'=0-w, 2=z,

D, =P, DPy=DPg—MJw, D,=Pp,, (3.7.17)
I =f.
Making use of Eqs. (3.7.14)-(3.7.17), it is straightforward to show that the

linearized Vlasov-Poisson equations in variables appropriate to the rotating
frame can be expressed as’

3,0 Trepn Me. 5 B T I PO
3at,+v P e[E x) e(we weQe)xl] al’,sJSfe(x,p,t)

’ A a ! '
—m,(Q, —2w,) V' XE, "o 8fe(x',p, 1)
! a ! ! '
=_eV’ S(I)(X',t) : ap;fg(H W, Pg»pz ), (3.718)

and

V'25¢(>;', = 47re'/-d3p' 8f,(x',p', 1), (3.7.19)

A

where v' = p'/m,. InEqgs.(3.7.18) and (3.7.19), V' =3/0x’, and x| =r'¢,,
where €, is a unit vector in the r'-direction (in the rotating frame). Note from
Eq. (3.7.18) that the effective equilibrium electric field in the rotating frame is

m
E%(x) = E°(x') — e—"(wg —w,Q,)x|. (3.7.20)
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The contribution, m, 2w,y X &, - (3/3p’) 8f,, in Eq. (3.7.18) arises from the
Coriolis acceleration of the electrons.
Equation (3.7.18) simplifies considerably inside the plasma column
(0 <r <R,) when w, =~ w% [Eq. (3.7.4)] and the electron density is constant
[Eq.(3.7.6)]. In this case, E°(x") = —(m,w}./2¢)x| [Eq.(3.7.10)], and
E(x") reduces to

m
Edp(x) = ——(w, —w)(w, —wp)x| =0, (3.7.21)

Furthermore, comparing Egs. (3.7.12) and (3.7.17), we find that H' — w P,
is equal to the kinetic energy of an electron in the rotating frame, that is,

H —w/Py=p*2m,, (3.7:22)

z4}z

PN ~— Axis of
Rotation

Axis Fixed in
Laboratory
Frame

Axis Fixed in
Rotating Frame

Wet

Fig.3.7.2 Equations (3.7.14) and (3.7.15) are transformed to a frame of refer-
ence rotating with angular velocity w, = const. about the axis of
symmetry. The variables (', 8', z") in the rotating frame are related
to the variables (r, 8, z) in the laboratory frame by r' =r, 6’ =6
—w,t,and z' =z.

where p”? =p,> + p¢ +p?. The advantage of transforming to the rotating
frame when w, = «}is evident. Inside the plasma column the effective equili-
brium electric field is equal to zero [Eq. (3.7.21)], and the equilibrium distri-
bution function in the rotating frame is spatially uniform since

JeH —w Py, p.) =", p.) (3.7.23)




is independent of r'[Eq. (3.7.22)] T When Egs. (3.7.21) and (3.7.23) are sub-
stituted into Eq. (3.7.18), the linearized Vlasov equation in the rotating frame
reduces to

)

I a Pal a ! ' '
—+v e —— _— ! oo §
ar TV my(§2, — 2w, v X'e, ap f(x,p,t)

1 [ L a ! !
=—eV' 5¢p(x, t") - ng(p 2 p.) (3.7.24)

for 0 <r<R,, and w, ~ w}. Equation (3.7.24) is indeed a plausible result.
Note that the only equilibrium force that the electrons experience in the rotat-
ing frame is equal to —m,(£2, — 2w, V' X &’,. As discussed in Section 1.2, the
perturbed orbits in the equilibrium fields are circular gyrations with angular
gyration frequency equal to the vortex frequency,®

Wep = Q, — 2w, . (3.7.25)

Note from Eqs. (3.7.5) and (3.7.25) that wey = (w}, — w) when w, = wy,
and w,, = —(w, —w;) when w, = w,. Equations (3.7.19) and (3.7.24)

are similar in form to the linearized Vlasov-Poisson equations for electrostatic
perturbations in a uniform neutral plasma immersed in an external magnetic
field By €,. In particular, if the positive ions are assumed to form a fixed back-
ground (m; > °°), and the replacement

Q,>Q, — 2w, = We (3.7.26)

is made in the linearized Vlasov equation for the electrons, Eqs. (3.7.19) and
(3.7.24) are recovered directly from the corresponding neutral plasma
equations.”

It 15 straightforward to obtain the dispersion 1elation for electrostatic perturba-
tions 1n a constant-density electron plasma by Fourier-Laplace transforming
Egs. (3.7.19) and (3.7.24) with respect to x' and . Alternatively, the appropri-
ate dispersion relation can be written down by analogy with the neutral plasma
result; it is this approach that is used in the present analysis. First, assume that
the perturbations 8f,(x’, p’, t) and 8¢(x, ¢') in Egs. (3.7.19) and (3.7.24) are
proportional to

exp [i(k" - x' —w't)] . (3.7.27

TOnly the dependence of H' — w, Py on p’* has been displayed on the right-hand side of
Eq. (3.7.23), and the factor (2m,)"* has been omitted [see Eq. (3.7.22)].
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Then make the replacement Q, - Q, — 2w, = w,, [Eq.(3.7.26)}] in the neutral
plasma dispersion relation,'® assuming a fixed ion background (m; - ). The
resulting dispersion relation for a pure electron plasma is

. 4 2 oo . kivi
mk'? n=—e w, —w;
Mwe—w;) , ,
— Ttk f"(p’,pz)
v, ov} av
X Y T , (3.7.28)
w —kyu, —n(w, —w;)
where L denotes the Landau contour.’ In Eq (3 7.28),v' = p'/m, vy =V + é"z,
v) = |v] | (where v| =v' —uv€,), k; =k’ - €}, k| —1kLl(where

ki =k'—kje}), k"> =k}2 +k?,and J, is the Bessel function of the first kind
of order n. In obtaining Eq. (3.7.28) use has been made of the identity
Wey = F(wE — w;) for w, = wi [see Egs. (3.7.5) and (3.7.25)] .*

Equation (3.7.28), which relates the wave vector k' and the complex oscilla-
tion frequency ', is the dispersion relation in a frame of reference rotating with
angular velocity w, (= w$) about the axis of symmetry (see Fig. 3.7.1), that is,
in a frame of reference corotating with the equilibrium. To obtain the disper-
sion relation appropriate to the laboratory fiame, it is necessary to relate
(k\, kz, w") in the rotating frame to (k,, k,, w) in the laboratory frame. For
spatial perturbations with azimuthal harmonic number 2," the relation is

TThe Landau contour in Eq. (3.7.28) refers to the integration with respect to p;. If

Imw' >0,then [ dp, = J dp,, that is, the integration is along the real p-axis.
L -0
However, if Im «’ < 0, then [ dp, loops under the singularity in the integrand in the

L
manner discussed in Sections 8.4 and 8.10 of Reference 88.

*Note that the integrand in Eq. (3.7.28) remains unchanged for (wg — wg) > —(wj — wpe)
and n - —n.

*This refers to perturbations where the g-dependence of 5f.(x, p, 1) and (X, #) is pro-
portional to exp (i26) 1n the laboratory frame.




/é‘g w'=w —fw,, ki =k, k; =k,. (3.7.29)

Since the equilibrium is azimuthally symmetric, the only effect is to Doppler-
shift the frequency by 2w,. Dropping the prime notation on p’ and v' in Eq.
(3.7.28), and making use of Eq. (3.7.29), we can express the dispersion relation
for a pure electron plasma in the laboratory frame as ™77

2 . kv
0=Dylky, k, )= 1+—T 3 j:zapJ; —
myk* n=—e A w, —w,
[ﬂ(&fé—wZ) 3

3
v, oy ke g]f c®*.p,) (3.7.30)

X
w—, —k,u, —n(w, —w;)

Equation (3.7.30) relates k and w for spatial perturbations with azimuthal
harmonic number 2. Keep in mind the range of applicability of Eq. (3.7.30).
First, it has been assumed that w, =~ w3 [Eq.(3.7.4)] and that the electron
density is constant in the column interior [Eq. (3.7.6)]. Second, boundary
effects at r = R, have been ignored, and the analysis is restricted to electro-
static perturbations localized to the column interior with » <R, and

k}R} > 1. Finally, Eq. (3.7.30) is the dispersion relation for a pure electron
plasma. It has been assumed that no ions are present in the system [f?(x, p)
= (], and that the plasma consists of a single component of electrons (rotating
with mean angular velocity w, = w5 OF W, = WZ).

It is straightforward to extend the previous analysis to a multicomponent non-
neutral plasma, assuming that the equilibrium distribution function for each
plasma component is of the form fo(H — w.Pg, p,), and that w, is closely
tuned to the laminar rotation velocity w7, or wy, where [see Eq. (2.2.12)]

—_ 1/2=
" ea‘Qa %: 4ﬂeaeﬂnn/ma 2
. = 5 1+ {1—2 _"“52__ . (3.7.31)

(1

w

In Eq. (3.7.31), ¢, = sgne, and Q, = | ey | Bo/mgc. If wy =Wy Or wy = wy
for each plasma component, the density of each component is approximately
constant [n2(r) =7, = const.] in the column interior, and H' — wy Py
=p'?/2m, in a frame of reference rotating with angular velocity w. In the
multicomponent case, the dispersion relation for electrostatic perturbations in
the column interior can be expressed as




4re} kv
0=Dylk, k,,w)=1+% —% = fd3pJ§ ———l——l——> /5-9

TR a mak2 n=—w o w‘;-—w;
MWy =wg) 3
————— e e —_— L] 2
« [ v, aulH‘z dy, f"‘(p Pz
w—w, — kv, —n(w, —w,) ) (3.7.32)

Equation (3.7.32) is the appropriate generalization of Eq. (3.7.30) to a multi-
component nonneutral plasma. It relates the wave vector k and complex oscilla-
tion frequency w (in the laboratory frame) for spatial perturbations with
azimuthal harmonic £. If no ions are present in the system [f?(x, p) = 0], and
the plasma consists of a single component of electrons (rotating with mean
angular velocity w, = w}, or w, = wg), Eq. (3.7.32) reduces to Eq. (3.7.30).
On the other hand, if the plasma is electrically neutral (Z,e,7, = 0), and each
component is in the slow rotational mode (w, = wy), Eq. (3.7.32) reduces to
the familar dispersion relation for electrostatic perturbations in a uniform neu-
tral plasma.'*® This follows since w} —wg = —€,82,, and W}, = 0, for
Zpeqiiy =0 [see Eq. (3.7.31)].

Since Eqgs. (3.7.30) and (3.7.32) are similar in structure to the corresponding
dispersion relations for a neutral plasma, many of the waves and instabilities that
depend on the detailed momentum-space structure of £ 2(p?, p,) have their ana-
logs in a constant-density nonneutral plasma in circumstances where the present
analysis is applicable. In fact, the results of a large body of neutral plasma
literature can be applied virtually intact with the replacements w = w — fw,
and Q, > #(wy — wg). Specific examples are discussed in Section 3.7.3.

3.7.3 Examples of Electrostatic Waves and Instabilities

In this section some of the electrostatic waves and instabilities characteristic
of body wave perturbations in a pure electron plasma are discussed.” ”” Use is
made of the dispersion relation in Eq. (3.7.30) and of the algorithms for obtain-
ing stability information for a pure electron plasma from the corresponding
results for a neutral plasma, that is,

wrw—lw, Q,>Hw,-w), m>e. (3.733)

A. Electron Plasma Oscillations at Brillouin Flow

Equation (3.7.30) is valid for electron density in the range 0 < 2w7,/Q2 < 1.
In the limit of Brillouin flow,'® 2%, /2 = 1, note from Eq. (3.7.5) and Fig.
3.2.1 that wi = Q,./2, and
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2w?

w,—w, =1, (l— 2>=0. (3.7.34)
Qe

From Eq. (3.7.33), the analogous limit in the neutral plasma case is the zero

magnetic field limit, Q_, - 0. Therefore, at Brillouin flow, the dispersion relation

in Eq. (3.7.30) can be expressed as

0= 12 [, KO pu ), (37.39)

mk* 4 w—k-v

where w' = w —2Q,/2, k =k, +k,¢,, andv = p/m,. Except for the Doppler
shift in frequency by £2./2, Eq. (3.7.35) is identical to the dispersion relation
for electrostatic perturbations in a uniform, unmagnetized neutral plasma,'’!
ignoring the ion dynamics (#; - o). Depending on the detailed form of
£2(p?, p.), Eq. (3.7.35) can support solutions corresponding to instability T
(Im w > 0). These include the gentle bump-in-tail instability's? and the non-
resonant two-stream instability [e.g., if the p,-dependence of £ 2(p?, p,) corres-
ponds to two cold, counterstreaming electron components.]

As an example corresponding to stable oscillations (Im w < 0), consider the
thermal equilibrium distribution function specified by [see Eq. (3.2.32)]

exp [FH~w.Pp)/8,].
(3.7.36)

O(Rr — A
fe (H ‘*’ePa’ pz) (27Tme®e)3,2

Comparing Eqgs. (3.7.22),(3.7.23), and (3.7.36) for w, ~ w} and 0 <r <R,
we can express fo(p?,p,) as

fe@?, p,)= exp (—p* [2m,8,) . .(3.7.37)

(-4
(2rm,6,)¥?

Dividing w into its real and imaginary parts, w = w, + iw;, and substituting
Eq. (3.7.37) into Eq. (3.7.35), we can show that

(@, ~ 09, [2? =@2(1+ 3k Ay ++ ), (3.7.38)

T1t has been assumed that the time variation of perturbed quantities is proportional to
exp (—iwt). Therefore Im w > 0 corresponds to temporal growth.
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172 —_
m wpe 1 3
w=—{%T) —P—exp (— 4 3.7.39
! (8) (kMp)? xP( 2K\ 2) (3.7.39)

for k>Ah=k?(©,/4n7.e?) < 1. In other words, for wavelengths long in com-
parison with the electron Debye length Ap, the system supports weakly damped
[lw;/(w, —22,/2) | € 1] electron plasma oscillations .

and

B. Bernstein Modes

As a further example, consider Eq. (3.7.30) fork, =0, wy —~w; = 8,
X (1 —2w2./Q2)"2 # 0, and the equilibrium distribution function specified by
Eq. (3.7.37). In this case, Eq. (3.7.30) reduces to
01— — S0 3 mel —w)? e (A0
(w; —w;)2 n=—e (W- Qwe)z —‘nz(w; _w;)2 7\: ’

(3.7.40)

where A, = k{®,/m.(w; — wg)?, and I, is the modified Bessel function of the
first kind of order n. Equation (3.7.40) is the analog of the Bernstein-mode
dispersion relation'> for a pure electron plasma. The solutions to Eq. (3.7.40)
correspond to pure oscillations (Im w = 0). If the electron density is low,

(Ta;‘;e H(ws —wg)? <1, the solutions to Eq. (3.7.40) can be approximated by

(w—2)? =n*(w! —w.)*[1 +a,,)], n=11,%2,%3,...,
(3.7.41)

where

205, exp (A, ()

(we —wp)? A -

@,,) = : (3.7.42)

and a,,(A,) € 1. Therefore a low-density pure electron plasma, characterized by
the equilibrium distribution function in Eq. (3.7.37), supports oscillations near

harmonics of (w} — wp) for electrostatic waves propagating perpendicular to
BgE,.

C. Loss-Cone Instability

The neutral plasma analog of Eq. (3.7.30) has been extensively investigated for
equilibrium distribution functions of the loss-cone form.'** 5% It may be
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anticipated that loss-cone distributions are also relevant to nonneutral plasma
experiments carried out in mirror geometries. As an example, consider the
equilibrium distribution function specified by [see Eq. (3.2.21)]

FUH~ WPy, p,) = 5 e 6(p)6(H WPy —m, Vi [2). (3.7.43)

Comparing Egs. (3.7.22), (3.7.23), and (3.7.43) for w, = w? and 0<r <R,
we can express f0(p?, p;) as

fe®@’ pz)=—5(P,)5[P1 —(m.V¢))?] . (3.7.44)

Substituting Eq. (3.7.44) into Eq. (3.7.30), and assuming k, = O for simplicity,
reduces the dispersion relation to

_2

w nw? — w;
0=1- ’;e z G j) .
ki n=—e w—fw, —nw?—w))
kvo
; doJf,( = ”_). (3.7.45)
Ve.L dVeJ_ We T W,

The neutral plasma analog of Eq. (3.7.45) has been studied by Crawford and
Tataronis,'>® who find a density threshold for instability. The instability con-
dition for a pure electron plasma can be expressed as w7 /(we — w)? > 6.62

or, equivalently, as

—2 5092, (3.7.46)

Note that the density threshold in Eq. (3.7.46) is slightly below the maximum
density limit for existence of the equilibrium [25,,,?/92 = 1 at Brillouin flow].
When Eq. (3.7.46) is satisfied, and 2¢03,/Q22 < 1, Eq. (3.7.45) has unstable solu-
tions with Im w = w; = 0w, — w,).

D. Two-Stream Instability

It is evident from Eq. (3.7.30) that momentum-space instabilities associated
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with the p,-dependence of f2(p?, p,) may also exist. As an example, consider
the equilibrium distribution function

202 p,)=Gp})F2(p,), (3.7.47)

where p} =p® —p3, 2n f, dp, p,G2(p?)=1,and
)
Fo(p,) = [6(p, —=m Vo) +8(p, +m,Vo)] . (3.7.48)

Note that the p,-dependence of F g(p,) corresponds to two equidensity, counter-
streaming electron components, as may be the case when incoming electrons
reflect from a magnetic mirror. When Eqgs. (3.7.47) and (3.7 48) are substituted
into Eq. (3.7.30), it is straightforward to analyze the resulting dispersion relation
in the limiting case where™

k23
Lo 41, (3.7.49)

(wp —we)

but still k}R2 > 1 [Eq. (3.7.7)]. In Eq. (3.7.49),v%,, = 2n [3 dp, pi(p1/m.)?
XG 2(p ) 1s the characteristic thermal speed-squared that is associated with the
electron motion perpendicular to Bo€,. Since J2(x) =(x/2)* for | x| <1 and
|n|> 1, itisvalid to retain only the n = O term in Eq. (3.7.30) and to approxi-
mate J3 [k, v, /(wf — w?)] = 1. For 2= 0and k? <kZ, the dispersion relation
assumes the familiar two-stream form:

Y
w32 . Wyel2

. 3.7.50
(w k Vo) (w+k,¥p)? ( )
The solutions to Eq. (3.7.50) are
w? = % (K273 + 32, + @o,e(G2, +8ZVE™] . (3.751)

{For a pure electron plasma the thermal Larmor radius is
Ry =[oipy] (wi—wz )2,
Therefore Egs. (3.7.49) and (3.7.7) require that the transverse wavelength be long in

comparison with a thermal Larmor radius (k[ > R? 1), but short in comparison with the
column radius (k 2 €R? )



The lower sign in Eq. (3.7.51) yields one unstable root provided k3 V'3 < wp,.
The maximum growth rate,

[wi]max = [Im w] max =6pe /2\/5,

occurs for K3V = (3/8) w),.

3.7.4 Dispersion Relarion for Transverse Electromagnetic Waves

For a nonneutral plasma, an analysis of the linearized Vlasov-Maxwell equa-
tions that includes electromagnetic perturbations with arbitrary polarization is
somewhat tedious. It is adequate for present purposes to consider the appropri-
ate dispersion relations for two configurations in which the polarization is
purely transverse. These are illustrated in Figs. 3.7.3 and 3.7.4. Asin Sections
3.7.1 - 3.7.3, it is assumed that perturbations are about constant-density rigid-
rotor equilibria with w, =~ w7 or w, =~ wg, and an equilibrium distribution
function of the form f2(H — w,Py, p,). Itis also assumed that the perturba-
tions are localized to the column interior (r <R ), with characteristic perpendi-
cular wavelength | k; | small in comparison with the column radius R, [Eq.
3.7.7]-

Fig. 3.7.3 Ordinary-mode polarization for transverse electromagnetic waves
propagating perpendicular to By€,. The perturbed field amplitudes
are oriented with 8B - €, = 0, 5E parallel to €,, and 8E - §B = 0.

The perturbed field configuration illustrated in Fig. 3.7.3 corresponds to
transverse electromagnetic waves propagating perpendicular to B, 32 with
k; #0,k, =0,8E || ’éz, and 6B 1 'e‘, For a pure electron plasma, the dispersion
relation for this configuration can be expressed as™

b Pk Bt e e




Fig.3.7.4 Transverse electromagnetic waves propagating parallel to Bogz. The
perturbed field amplitudes are oriented with 6B - €, =0
=8E+¢,andSE - §B=0.

4qe? = n(wy, —wy,)

Me n=—w w—, —n(w, —w])

— (32 — 22 732
0=w*—ck; —w,, +

kv,

v? 3
x farpsz (Kt ¥ 8 o0,
f Pn (w; —(4);) v, avlfe(p :pz) s (37.52)

where the notation is the same as in Section 3.7.2. If the plasma is cold parallel
to the magnetic field, = _ dp,v2f2 = 0, then Eq. (3.7.52) reduces to the
familiar resultt

w? =c%k? + Wae - (3.7.53)
If the plasma is warm and the equilibrium distribution function f2(p?, p,) is an
isotropic Maxwellian [Eq. (3.7.37)], the solutions to Eq. (3.7.52) satisfy
Im w = 0, and exhibit an intricate harmonic structure for w — 2w, close to
n(we —wg),n =1%1,%2, 43, - + « . However, if the equilibrium distribution
function is anisotropic, the possibility of electromagnetic instability (Im ¢ > 0)
exists. For example, if f0(p?, p,) is bi-Maxwellian,

126%,p2) L Pt
, = €X - - s
eP P (zme Ge.l.) (27rme ®ez ) v ° 2me ee.t 2me eez

(3.7.54)

TThe mode in Eq. (3.7.53) can serve as a useful density diagnostic for nonneutral as well
as neutral plasmas.




F

vvitZG)ez > @,,, then by analogy with the neutral plasma case '* S7Eq, (3.7.52)
has unstable solutions provided [w},/(we — w2)?] (s /m.c?) exceeds a cer-
tain threshold value. For ©,, € ©,,, the condition for instability can be
expressed as

w2 )
>, (3.7.55)
(we _we) mec

Since ©,, €m,c* has been assumed (nonrelativistic assumption), and

(wh —we)? = Q2(1 — 232,/92), Eq. (3.7.55) requires densities very close
to Brillouin flow (2&52./Q2 = 1). When Eq. (3.7.55) 1s satisfied, and

©,, €8,,,Eq.(3.7.52) has unstable solutions with Im w = ;= 0(w ,—w, ).}’

The perturbed field configuration illustrated in Fig. 3.7.4 corresponds to

transverse electromagnetic waves propagating parallel to Bogz with k, #0,

k =~ 0,f 6E L/e\z, and $Bl,. Fora pure electron plasma rotating in the slow
(we = w;) rotational mode, the dispersion relation® for this configuration can

be expressed as”’

2
0=D_(k,, w)= w? —c2k? + 4—":—/213;;(%/2)
e

e, v,(3/0v,) + (w —k,v,) (8/0v)] F2(p*, p,)

X . (3.7.56)
w—ku, Tw}

where the notation is the same as in Section 3.7.2. The upper (=) and lower
(+) signs in Eq. (3.7.56) correspond to waves with right-hand and left-hand circu-
lar polanization, respectively. The dispersion relation in Eg. (2.7.56) is identical
in form with the corresponding result for a netural plasma'*® if the replace-
ments 2, > wy and m, > °° are made in the neutral plasma dispersion relation.
As in the neutral plasma case, if there is an anisotropy in kinetic energy*%* 160
with [ d@®p p?f2(p?, p.) exceeding [ d*p p2f2(p?, p,) by a sufficient amount,
Eq. (3.7.66) supports unstable solutions with Im w > 0. Examples of unstable
equilibria include the loss-cone distribution in Eq. (3.7.44) and the bi-Maxwell-
ian distribution in Eq. (3.7.54) for ®,, > ©,,. The corresponding growth rates
for a pure electron plasma can be written down by direct analogy with the
neutral plasma results.

TThe limit £, — 0 is approximate since k_’LR;, < 1 is required {Eq. (3.7.7)].

*For a pure electron plasma rotating in the fast (w, ~ w?}) rotational mode the dispersion
relation is identical in form to Eq. (3.7.56) with the denominator, w —k, u, ¥ w?, replaced

by w—kzvz Fwy.



It is interesting to note the effect of no neutralizing ion background on the 7‘ 5
low-frequency long-wavelength modes obtained from Eq. (3.7.56). For ww—~>0

and k, =0 [ie., | w/we | €1 and k2v} fw? <€ 1], Eq. (3.7.56) can be
approximated by

w? —ck? t wiw/we=0. (3.7.57)

Ask; ~ 0, Eq. (3.7.57) gives w = Hc?k? (w2, )w. In contrast to the neutral

plasma case, where w? = k> V7 at low frequencies '® (here ¥, is the Alfvén
velocity), the electron whistler mode persists in a pure electron plasma down to
zero frequency, and the mode is dispersive (w ~ ki) ask,~0.
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SUBJECT INDEX

Acceleration of ions, see Collective-effect
acceleration .

Alfvén critical current, 84, 88, 132
Alfvén waves, 177
Autoresonant accelerator, 188
Avco Hipac, 2 ‘
Axisymmetric equilibria

for plasma column, 92

for mirror-confined plasma, 96, 141

Beam-plasma interaction, see Relativistic
two-stream instability, and Two-rotating-
stream instability

Bennett pinch, macroscopic model, 40

Bernstein modes in nonneutral plasma, 171

Betatron oscillations, 153

Binary collisions, 1, 10

Brillouin flow, 7, 102, 169

Budker’s parameter, 133, 144

Charged particle motion in nonneutral
plasma, 4
Closure of macroscopic fluid equations, 14
Cold-plasma approximation, 11, 14
Cold-plasma equations, see also Macroscopic
fluid equations
equilibrium force balance, 17
for relativistic nonneutral plasma, 14
Collective-effect acceleration
in linear-beam geometries, 2
relativistic electron rings, 2, 141
Collective effects, 1, 2
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Coriolis acceleration, 165
Critical Curtrent, see Alfvén critical current

Debye shielding in nonneutral plasma, 1
Diamagnetic equilibria, see Relativistic
diamagnetic equilibria
Dielectric function, see Dispersion relation
Diocotron instability, 66
dispersion relation, 71
growth rate, 72
nonlinear stabilization, 73
resonant, 74
sufficient condition for stability, 67
Disperston relation
for Berstein modes, 171
for diocotron instability, 71
for electron plasma oscillations, 170
for electron whistlers, 177
for electromagnetic waves in nonneutral
plasma, 175, 176
for electrostatic waves in nonneutral
plasma, 45,49, 162, 168
for loss-cone instability, 172
for nonneutral plasma-filled waveguide,
49, 50
for relativistic two-stream instability,
78, 80
for surface waves on nonneutral plasma
column, 60
for two-rotating-stream instability, 57, 63
Distribution function, 11, 12

197



E-layers, see Relatvistic E-layers
Electron beams, see Relativistic electron
beams
Electron electron two-steam mstabihties,
see Instabilities
Electron 1on two-steam 1nstabilities, see
Instabilities
Electron plasma oscillations, 171
Electron rings, see Relatvistic electron rings
Electrostatic approximation, 42, 156, 162
Equihbria
and macroscopic fluid description, 14,
17 41
and Vlasov description 12,90-154
for axisymmetric mlrror-conflqed plasmas,
96
for anisymmetric plasma column, 92
hollow beam, 25, 69, 109
nonrelativistic nondiamagnetic, 21, 98
relativistic E layer, 113
relativistic electron beam, 32, 40, 125
relativistic electron ring, 141
relativistic dtamagnetic, 25
rigid-rotor, 100
Equilibrium torce equation, 17
and macroscopic fluid description, 15
tor Bennett pinch, 40
Equation of state
1sothermal, 40

Field reversal, 27, 121, 125

Filamentation instability, 189, 190

Fluid equations, see Macroscopic fluid
equations

Heat flow tensor, 15

Heating due to relativistic beam-plasma
interaction, 2

Historical background, 1

Hollow beam equilibnia, 25, 69, 109

Instability
diocotron, 66
electron-electron two-rotating-stream, 55
electron electron two-stream, 172
electron-ion two-rotating-stream, 62
electromagnetic, 175, 176
tilamentation, 189, 190
loss cone, 171
relativistic electron-electron two-stream, 83
relativistic electronton two-stream, 88
resonant diocotron, 74

Kinetic equation, see Vlasov equation
Klystron, 1

Landau contour, 167

Landau damping, 171

Loss cone
distribution for nonneutral plasma, 104
instability, 171

Macroscopic fluid equations
and cold-plasma approximation, 11, 14
and derwation from Vlasov equation, 14
for relativistic nonneutral plasma, 14-16
Macroscopic equilibria
equilibrium force equation, 17
for Bennett pinch, 40
for nonneutral plasma column, 21
for relativistic electron beam, 32
nonrelativistic nondiamagnetic, 21
relativistic diamagnetic, 25
Macroscopic stability
and diocotron instability, 66
and electrostatic disperson relation for
constant density plasma column, 45§
and linearized fluid-Poisson equations, 41
for nonneutral plasma-filled waveguide, 49
for relativistic beam plasma interaction, 78
for surface waves on a nonneutral plasma
column, 60
stability theorem, 67
Magnetoelectric confinement, 1
Microwave production, 1
Mirror-confined equilibria, 96, 141
Moment-Maxwell equations, see Macroscopic
fluid equations

Nonneutral plasma
defimition, 1
examples, 1, 2
macroscopic equilibria and stability, 14,
17 89
Vlasov equilibria and stability, 12, 90-177

Particle stress tensor, 14, 100, 107,111,
138, 148

Phase space, 12, 142

Plasma oscaillations, 171

Pressure tensor, see Particle stress tensor

Relativistic beam-plasma interaction, see
Relativistic two-stream nstability
Relativistic diamagnetic equilibria, 25



Relativistic E layers, 113
field reversal, 121, 125
Vlasov equilibrium with diffnse radial
boundaries, 121
Vlasov equilibrium with sharp radial
boundaries, 116
Relattvistic electron beams
and Alfvén limiting current, 84, 88, 132
and collective ion acceleration, 2
and mteraction with plasma, 78
and microwave production, 2
macroscopic equilbria, 32
macroscopic model of Bennett pinch, 40
Vlasov equilibria, 125
Relativistic electron rings
and collective 10n acceleration, 2, 141
and Vlasov equilibria in miurror geometry,
141
Relativistic fluid equations, see Macroscopic
fluid equations
Relativistic two-stream mstability, 78
current threshold, 84, 88
electron-electron, 83
electron-ion, 88
electrostatic dispersion relation, 78, 80
in thin beam limit, 86
mn plasma-filled waveguide, 81

Stable oscillations
and body waves 1n a nonneutral plasma,
170, 171
and surface waves on a nonneutral plasma
column, 61
in nonneutral plasma-filled waveguide, 52
Stability, see also Dispetsion relation and
Instability
and macroscopic fluid description, 15, 41-
89

and Vlasov description, 13, 156-177
sufficient condition for stability, 67, 68,
155,158

Theta pinch /ﬁﬁ

Vlasov equilibrium with diffuse radial
boundaries, 121
Theoretical models
general discusston, 10
macroscopic flund description, 14
Vlasov description, 12
Two-rotating-stream nstability
electron-electron, 55
electron-ion, 62
Two stream instability, see also Relativistic
two-stream instability and Two-rotating-
stream instabiity

Viasov equation
for relativistic nonneutral plasma, 12-14
Vlasov equilibria
for axisymmetric plasma column, 92
for axisymmetric mirror-confined plasma,
96
for nonneutral plasma column, 98
for relativistic E-layer, 113
for relativistic electron beamn, 125
for relativistic electron ring, 141
nonrelativistic nondiamagnetic, 98
ngd-rotor, 100
Vlasov stability
and dispersion relation for electrostatic
waves, 162
and dispersion relation for transverse
electromagnetic waves, 174
and examples of electrostatic waves and
instabilities, 169
stability theorem, 155
Vlasov-Maxwell equations, see Viasov
equation
Vortex frequency, 8, 51, 166

Waves, see also Dispersion relation, Insta~
bility, and Stable oscillations
body, 159
surface, 60
Whistlers, see Electron whistlers
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